对抗择优抽取算法,两列负向综合评价值


论文写作或者计算需要帮助可发邮件到 hwstu # sohu.com 把 #替换成@,请说清来意,不必拐弯抹角,浪费相互之间的时间。(收费项目)

流程图



  VIKOR(VlseKriterijumska Optimizacija I Kompromisno Resenje)是Opricovic(1998)提出一种基于理想解的折中排序方法,通过最大化群体效用和最小化个体遗憾来实现有限备选决策方案的最优排序。其中所谓的最大化群体效用又称为期望值,对应的闵可夫斯基范数为1时候的曼哈顿距离公式;个体遗憾值又称为遗憾值,对应的闵可夫斯基范数为无穷大的切比雪夫距离公式   

  一言以蔽之:VIKOR核心就是针对归一化矩阵,通过带权值的范数为1与范数为无穷大闵可夫斯基距离求解出距离

  常规的VIKOR方法中期望值S、遗憾值R都为负向指标,即数值越大越劣,数值越小越牛逼。

-$S^+$ 期望值
-$R^+$遗憾值
$$ S_i^+ = \sum_\limits{j=1}^m{ \omega_{j} \left(\frac{Max(n_j) -n_{ij}}{Max(n_j) -Min(n_j)} \right)} \quad \quad $$ $$ R_i^+ = \max_\limits{j=1} { \left( \omega_{j} (\frac{Max(n_j) -n_{ij}}{Max(n_j) -Min(n_j)} )\right)} \quad \quad $$
负向指标
负向指标
闵可夫斯基距离 范数为 1
闵可夫斯基距离 范数为 无穷大
到正理解的距离
到正理想解的距离
- 前缀表示为负向指标
- 前缀表示为负向指标

   常用的针对S,R的妥协解公式如下

$$ Q_i =\left( 1-k \right) \left(\frac{S_i - Min(S_i)}{Max(S_i) -Min(S_i)} \right) + k\left(\frac{R_i - Min(R_i)}{Max(R_i) -Min(R_i)} \right) $$

   S、R是负向指标,采用上述妥协解公式后,妥协值Q依然为负向指标

   AECM(Adversarial Extract Champion Mothod) 对抗择优抽取方法是天然的对VIKOR形成降维打击的模型方法。

   其描述如下。

   第一、为什么取k=0.5时得到的妥协值Q为最后的排序结果,这种拍脑袋直接取这个值为最终结果是想当然,AECM是如何对它进行改进的?

   第二、当k在[0,1]区间时,妥协值Q总共有几种排序?这些排序是怎样一个变化?

   第三、k在[0,1]整个区间时,妥协值Q总体呈现出什么样的排序结果?优胜情境跟劣汰情境为什么可能出现不一致?

原始矩阵如下:


$$ \begin{array}{c|c|c|c|c|c|c}{M_{11 \times15}} & -PN1 & -PN2 & -PE1 & -PS1 & -PS2 &SN1 &SN2 &SN3 &SE1 &SS1 &RN1 &RN2 &RE1 &RE2 &RS1\\ \hline 2011 &0.654302103 &278.5577711 &0.104246565 &426.623418 &0.484969128 &0.518335321 &0.734225621 &0.050682504 &8.714200492 &8.950944846 &0.850812256 &10.3 &7380.279843 &35115.65191 &176.2\\ \hline 2012 &0.64018787 &230.2072698 &0.100574919 &430.0655108 &0.498760764 &0.524293616 &0.720190933 &0.053800771 &8.311141515 &8.547470721 &0.868804512 &11.1 &8725.395288 &39690.62085 &170.1\\ \hline 2013 &0.634839501 &232.7438152 &0.095228796 &433.091812 &0.510793577 &0.534174192 &0.725746269 &0.053359371 &8.162741259 &8.838568347 &0.889545989 &12.82 &10872.14779 &43857.04467 &144.4\\ \hline 2014 &0.621034465 &198.6498147 &0.094446274 &435.3089733 &0.524130018 &0.545060211 &0.730176133 &0.05345935 &8.324123649 &10.36566358 &0.912120266 &8.67 &12075.052 &47967.53527 &159.4\\ \hline 2015 &0.617366121 &179.1637029 &0.093725645 &438.6801925 &0.540016156 &0.547408526 &0.727055177 &0.052997358 &8.456326593 &10.10966409 &0.932741508 &50.29 &13182.83334 &51652.87565 &157.2\\ \hline 2016 &0.614656439 &134.5724311 &0.093564023 &442.1742592 &0.558923488 &0.547604836 &0.732802092 &0.052527861 &8.333882334 &10.73475734 &0.951164027 &50.54 &14328.14133 &55939.46599 &138.94\\ \hline 2017 &0.605388917 &93.61972547 &0.086820781 &445.1131496 &0.577785857 &0.548797995 &0.737336045 &0.052199574 &8.053402438 &11.01950072 &0.958207523 &62.2 &15557.73277 &61583.50207 &252.86\\ \hline 牛逼 &0.4 &100 &0.05 &400 &0.3 &0.7 &0.8 &0.1 &10 &20 &0.95 &12 &30000 &50000 &150\\ \hline 很好 &0.6 &200 &0.1 &600 &0.5 &0.5 &0.7 &0.08 &8 &15 &0.9 &9 &20000 &40000 &100\\ \hline 良 &0.7 &300 &0.2 &800 &0.6 &0.4 &0.6 &0.05 &6 &10 &0.8 &6 &15000 &30000 &50\\ \hline 很垃圾 &0.8 &400 &0.3 &1000 &0.7 &0.3 &0.5 &0.02 &4 &5 &0.7 &3 &10000 &20000 &20\\ \hline \end{array} $$

采用的归一方法如下


极差法

正向指标公式:$$ n_{ij} = \frac{{o_{ij}-min(o_{j})}}{{max(o_{j})-min(o_{j})}} $$

负向指标公式:$$ n_{ij} = \frac{max(o_{j})-{o_{ij}}}{{max(o_{j})-min(o_{j})}} $$


归一化矩阵如下


$$ \begin{array}{c|c|c|c|c|c|c}{M_{11 \times15}} & -PN1 & -PN2 & -PE1 & -PS1 & -PS2 &SN1 &SN2 &SN3 &SE1 &SS1 &RN1 &RN2 &RE1 &RE2 &RS1\\ \hline 2011 &0.364 &0.396 &0.783 &0.956 &0.538 &0.546 &0.781 &0.384 &0.786 &0.263 &0.584 &0.123 &0 &0.364 &0.671\\ \hline 2012 &0.4 &0.554 &0.798 &0.95 &0.503 &0.561 &0.734 &0.423 &0.719 &0.236 &0.654 &0.137 &0.059 &0.474 &0.645\\ \hline 2013 &0.413 &0.546 &0.819 &0.945 &0.473 &0.585 &0.752 &0.417 &0.694 &0.256 &0.734 &0.166 &0.154 &0.574 &0.534\\ \hline 2014 &0.447 &0.657 &0.822 &0.941 &0.44 &0.613 &0.767 &0.418 &0.721 &0.358 &0.822 &0.096 &0.208 &0.673 &0.599\\ \hline 2015 &0.457 &0.721 &0.825 &0.936 &0.4 &0.619 &0.757 &0.412 &0.743 &0.341 &0.901 &0.799 &0.257 &0.761 &0.589\\ \hline 2016 &0.463 &0.866 &0.826 &0.93 &0.353 &0.619 &0.776 &0.407 &0.722 &0.382 &0.973 &0.803 &0.307 &0.864 &0.511\\ \hline 2017 &0.487 &1 &0.853 &0.925 &0.306 &0.622 &0.791 &0.402 &0.676 &0.401 &1 &1 &0.362 &1 &1\\ \hline 牛逼 &1 &0.979 &1 &1 &1 &1 &1 &1 &1 &1 &0.968 &0.152 &1 &0.721 &0.558\\ \hline 很好 &0.5 &0.653 &0.8 &0.667 &0.5 &0.5 &0.667 &0.75 &0.667 &0.667 &0.775 &0.101 &0.558 &0.481 &0.344\\ \hline 良 &0.25 &0.326 &0.4 &0.333 &0.25 &0.25 &0.333 &0.375 &0.333 &0.333 &0.387 &0.051 &0.337 &0.24 &0.129\\ \hline 很垃圾 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.116 &0 &0\\ \hline \end{array} $$
正极值点构成
$$ \begin{array}{c|c|c|c|c|c|c}{M_{1 \times15}} & -PN1 & -PN2 & -PE1 & -PS1 & -PS2 &SN1 &SN2 &SN3 &SE1 &SS1 &RN1 &RN2 &RE1 &RE2 &RS1\\ \hline \mathbf{Zone^+} &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1\\ \hline \end{array} $$
负极值点构成
$$ \begin{array}{c|c|c|c|c|c|c}{M_{1 \times15}} & -PN1 & -PN2 & -PE1 & -PS1 & -PS2 &SN1 &SN2 &SN3 &SE1 &SS1 &RN1 &RN2 &RE1 &RE2 &RS1\\ \hline \mathbf{Zone^-} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline \end{array} $$

  采用的是熵权法(EWM)求权重W1

$$ \begin{array}{c|c|c|c|c|c|c}{M_{2 \times15}} & -PN1 & -PN2 & -PE1 & -PS1 & -PS2 &SN1 &SN2 &SN3 &SE1 &SS1 &RN1 &RN2 &RE1 &RE2 &RS1\\ \hline EWM所得权重 &0.056255 &0.052243 &0.040037 &0.04453 &0.05917 &0.048601 &0.042516 &0.056495 &0.042611 &0.074201 &0.044361 &0.196456 &0.123409 &0.057263 &0.061853\\ \hline 权重大小顺序 &8 &9 &15 &11 &5 &10 &14 &7 &13 &3 &12 &1 &2 &6 &4\\ \hline \end{array} $$

代入距离公式,分别得到期望值 S 与 遗憾值 R


$S$ 期望值
$R$遗憾值
$$ S_i = \sum_\limits{j=1}^m{ \omega_{j} \left(\frac{Max(n_j) -n_{ij}}{Max(n_j) -Min(n_j)} \right)} \quad \quad $$ $$ R_i = \max_\limits{j=1} { \left( \omega_{j} (\frac{Max(n_j) -n_{ij}}{Max(n_j) -Min(n_j)} )\right)} \quad \quad $$

代入权重值等即得(S R)两列矩阵,两列都为负向指标


$$ \begin{array}{c|c|c|c|c|c|c}{M_{11 \times2}} &期望值 &遗憾值\\ \hline 2011 &0.6067 &0.1724\\ \hline 2012 &0.5845 &0.1697\\ \hline 2013 &0.5633 &0.164\\ \hline 2014 &0.5405 &0.1778\\ \hline 2015 &0.3876 &0.0918\\ \hline 2016 &0.3686 &0.0856\\ \hline 2017 &0.2775 &0.0789\\ \hline 牛逼 &0.2126 &0.1668\\ \hline 很好 &0.5022 &0.1767\\ \hline 良 &0.7471 &0.1867\\ \hline 很垃圾 &0.9858 &0.1965\\ \hline \end{array} $$

由妥协解公式求出基础决策矩阵(边界决策矩阵)


$$ Q_i =\left( 1-k \right) \left(\frac{S_i - Min(S_i)}{Max(S_i) -Min(S_i)} \right) + k\left(\frac{R_i - Min(R_i)}{Max(R_i) -Min(R_i)} \right) $$

$$base=\begin{array}{c|c|c|c|c|c|c}{M_{11 \times2}} &Q(k=0) &Q(k=1)\\ \hline 2011 &0.5097 &0.7954\\ \hline 2012 &0.4809 &0.7728\\ \hline 2013 &0.4536 &0.7242\\ \hline 2014 &0.4241 &0.8415\\ \hline 2015 &0.2264 &0.1103\\ \hline 2016 &0.2018 &0.0571\\ \hline 2017 &0.084 &0\\ \hline 牛逼 &0 &0.7474\\ \hline 很好 &0.3745 &0.8322\\ \hline 良 &0.6913 &0.9169\\ \hline 很垃圾 &1 &1\\ \hline \end{array} $$

AECM运算之一,获得交点(拐点)


求解线段在决策区间的交点,k代表决策系数

  所谓拐点,就是上述线段中的交点

  所谓排序分析,即每个决策系数k对应的Q值的优劣排序,数值越低越优。两个拐点之间要素的排序是稳定一致的

  拐点处(交点),存在着至少一次,某两个要素的排序是一致的。

  交点坐标位置接近,以至于观测不到交点,下面会变换坐标,使得拐点等距,这样方便观测拐点具体的值。

  由上图得到交点加上k=0,k=1即得到所有拐点,结果如下。

$$\begin{array}{c|c|c|c|c|c|c}{M_{12 \times1}} &拐点对应的k值\\ \hline 0 &0\\ \hline 1 &0.1011\\ \hline 2 &0.201\\ \hline 3 &0.2262\\ \hline 4 &0.2622\\ \hline 5 &0.4229\\ \hline 6 &0.4529\\ \hline 7 &0.6421\\ \hline 8 &0.6503\\ \hline 9 &0.7864\\ \hline 10 &0.9514\\ \hline 11 &1\\ \hline \end{array} $$

AECM运算之二,求聚类——排序聚类分析


$$Qk_{matrix}=\begin{array}{c|c|c|c|c|c|c}{M_{11 \times12}} &k=0 &k=0.101 &k=0.201 &k=0.226 &k=0.262 &k=0.423 &k=0.453 &k=0.642 &k=0.65 &k=0.786 &k=0.951 &k=1\\ \hline 2011 &0.51 &0.539 &0.567 &0.574 &0.585 &0.631 &0.639 &0.693 &0.696 &0.734 &0.782 &0.795\\ \hline 2012 &0.481 &0.51 &0.54 &0.547 &0.557 &0.604 &0.613 &0.668 &0.671 &0.71 &0.759 &0.773\\ \hline 2013 &0.454 &0.481 &0.508 &0.515 &0.525 &0.568 &0.576 &0.627 &0.63 &0.666 &0.711 &0.724\\ \hline 2014 &0.424 &0.466 &0.508 &0.519 &0.534 &0.601 &0.613 &0.692 &0.696 &0.752 &0.821 &0.841\\ \hline 2015 &0.226 &0.215 &0.203 &0.2 &0.196 &0.177 &0.174 &0.152 &0.151 &0.135 &0.116 &0.11\\ \hline 2016 &0.202 &0.187 &0.173 &0.169 &0.164 &0.141 &0.136 &0.109 &0.108 &0.088 &0.064 &0.057\\ \hline 2017 &0.084 &0.076 &0.067 &0.065 &0.062 &0.048 &0.046 &0.03 &0.029 &0.018 &0.004 &0\\ \hline 牛逼 &0 &0.076 &0.15 &0.169 &0.196 &0.316 &0.339 &0.48 &0.486 &0.588 &0.711 &0.747\\ \hline 很好 &0.375 &0.421 &0.466 &0.478 &0.494 &0.568 &0.582 &0.668 &0.672 &0.734 &0.81 &0.832\\ \hline 良 &0.691 &0.714 &0.737 &0.742 &0.75 &0.787 &0.793 &0.836 &0.838 &0.869 &0.906 &0.917\\ \hline 很垃圾 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1\\ \hline \end{array} $$

    上述两列都是负向向指标,数值越小越好。因此排序情况如下:

$$Q_{rank}=\begin{array}{c|c|c|c|c|c|c}{M_{11 \times12}} &k=0 &k=0.101 &k=0.201 &k=0.226 &k=0.262 &k=0.423 &k=0.453 &k=0.642 &k=0.65 &k=0.786 &k=0.951 &k=1\\ \hline 2011 &9 &9 &9 &9 &9 &9 &9 &9 &8 &7 &7 &7\\ \hline 2012 &8 &8 &8 &8 &8 &8 &7 &6 &6 &6 &6 &6\\ \hline 2013 &7 &7 &6 &6 &6 &5 &5 &5 &5 &5 &4 &4\\ \hline 2014 &6 &6 &6 &7 &7 &7 &7 &8 &8 &9 &9 &9\\ \hline 2015 &4 &4 &4 &4 &3 &3 &3 &3 &3 &3 &3 &3\\ \hline 2016 &3 &3 &3 &2 &2 &2 &2 &2 &2 &2 &2 &2\\ \hline 2017 &2 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1\\ \hline 牛逼 &1 &1 &2 &2 &3 &4 &4 &4 &4 &4 &4 &5\\ \hline 很好 &5 &5 &5 &5 &5 &5 &6 &6 &7 &7 &8 &8\\ \hline 良 &10 &10 &10 &10 &10 &10 &10 &10 &10 &10 &10 &10\\ \hline 很垃圾 &11 &11 &11 &11 &11 &11 &11 &11 &11 &11 &11 &11\\ \hline \end{array} $$

   拐点与区段的排序如下:其中拐点中交点的位置有相等的情况出现。

序号性质与对应k值 区段大小 Q值排序
100$牛逼 = 2017\succ 2016\succ 2015\succ 很好\succ 2014\succ 2013\succ 2012\succ 2011\succ 良\succ 很垃圾$
20<$k$<0.1010670.101067$牛逼\succ 2017\succ 2016\succ 2015\succ 很好\succ 2014\succ 2013\succ 2012\succ 2011\succ 良\succ 很垃圾$
30.1010670$牛逼\succ 2017 = 2016\succ 2015\succ 很好\succ 2014\succ 2013\succ 2012\succ 2011\succ 良\succ 很垃圾$
40.101067<$k$<0.2009670.099901$2017\succ 牛逼\succ 2016\succ 2015\succ 很好\succ 2014\succ 2013\succ 2012\succ 2011\succ 良\succ 很垃圾$
50.2009670$2017\succ 牛逼\succ 2016\succ 2015\succ 很好\succ 2014\succ 2013 = 2012\succ 2011\succ 良\succ 很垃圾$
60.200967<$k$<0.2262090.025242$2017\succ 牛逼\succ 2016\succ 2015\succ 很好\succ 2013\succ 2014\succ 2012\succ 2011\succ 良\succ 很垃圾$
70.2262090$2017\succ 2016\succ 牛逼 = 2015\succ 很好\succ 2013\succ 2014\succ 2012\succ 2011\succ 良\succ 很垃圾$
80.226209<$k$<0.2621630.035954$2017\succ 2016\succ 牛逼\succ 2015\succ 很好\succ 2013\succ 2014\succ 2012\succ 2011\succ 良\succ 很垃圾$
90.2621630$2017\succ 2016\succ 2015\succ 牛逼 = 很好\succ 2013\succ 2014\succ 2012\succ 2011\succ 良\succ 很垃圾$
100.262163<$k$<0.4228540.160691$2017\succ 2016\succ 2015\succ 牛逼\succ 很好\succ 2013\succ 2014\succ 2012\succ 2011\succ 良\succ 很垃圾$
110.4228540$2017\succ 2016\succ 2015\succ 牛逼\succ 2013\succ 很好 = 2014\succ 2012\succ 2011\succ 良\succ 很垃圾$
120.422854<$k$<0.452940.030086$2017\succ 2016\succ 2015\succ 牛逼\succ 2013\succ 很好\succ 2014\succ 2012\succ 2011\succ 良\succ 很垃圾$
130.452940$2017\succ 2016\succ 2015\succ 牛逼\succ 2013\succ 很好\succ 2012\succ 2014 = 2011\succ 良\succ 很垃圾$
140.45294<$k$<0.6420610.189121$2017\succ 2016\succ 2015\succ 牛逼\succ 2013\succ 很好\succ 2012\succ 2014\succ 2011\succ 良\succ 很垃圾$
150.6420610$2017\succ 2016\succ 2015\succ 牛逼\succ 2013\succ 很好\succ 2012 = 2014\succ 2011\succ 良\succ 很垃圾$
160.642061<$k$<0.6502970.008237$2017\succ 2016\succ 2015\succ 牛逼\succ 2013\succ 2012\succ 很好\succ 2014\succ 2011\succ 良\succ 很垃圾$
170.6502970$2017\succ 2016\succ 2015\succ 牛逼\succ 2013\succ 2012\succ 很好\succ 2011\succ 2014 = 良\succ 很垃圾$
180.650297<$k$<0.7863980.136101$2017\succ 2016\succ 2015\succ 牛逼\succ 2013\succ 2012\succ 很好\succ 2011\succ 2014\succ 良\succ 很垃圾$
190.7863980$2017\succ 2016\succ 2015\succ 牛逼\succ 2013\succ 2012\succ 2011\succ 很好 = 2014\succ 良\succ 很垃圾$
200.786398<$k$<0.9514090.165011$2017\succ 2016\succ 2015\succ 牛逼\succ 2013\succ 2012\succ 2011\succ 很好\succ 2014\succ 良\succ 很垃圾$
210.9514090$2017\succ 2016\succ 2015\succ 牛逼\succ 2013 = 2012\succ 2011\succ 很好\succ 2014\succ 良\succ 很垃圾$
220.951409<$k$<10.048591$2017\succ 2016\succ 2015\succ 2013\succ 牛逼\succ 2012\succ 2011\succ 很好\succ 2014\succ 良\succ 很垃圾$
2310$2017 = 2016\succ 2015\succ 2013\succ 牛逼\succ 2012\succ 2011\succ 很好\succ 2014\succ 良\succ 很垃圾$

   提取区段的位置

序号 聚类特征-对应k值区段 区段大小 Q值排序
10<$k$< 0.1010670.101067$牛逼 \succ 2017 \succ 2016 \succ 2015 \succ 很好 \succ 2014 \succ 2013 \succ 2012 \succ 2011 \succ 良 \succ 很垃圾$
20.101067<$k$< 0.2009670.0999$2017 \succ 牛逼 \succ 2016 \succ 2015 \succ 很好 \succ 2014 \succ 2013 \succ 2012 \succ 2011 \succ 良 \succ 很垃圾$
30.200967<$k$< 0.2262090.025242$2017 \succ 牛逼 \succ 2016 \succ 2015 \succ 很好 \succ 2013 \succ 2014 \succ 2012 \succ 2011 \succ 良 \succ 很垃圾$
40.226209<$k$< 0.2621630.035954$2017 \succ 2016 \succ 牛逼 \succ 2015 \succ 很好 \succ 2013 \succ 2014 \succ 2012 \succ 2011 \succ 良 \succ 很垃圾$
50.262163<$k$< 0.4228540.160691$2017 \succ 2016 \succ 2015 \succ 牛逼 \succ 很好 \succ 2013 \succ 2014 \succ 2012 \succ 2011 \succ 良 \succ 很垃圾$
60.422854<$k$< 0.452940.030086$2017 \succ 2016 \succ 2015 \succ 牛逼 \succ 2013 \succ 很好 \succ 2014 \succ 2012 \succ 2011 \succ 良 \succ 很垃圾$
70.45294<$k$< 0.6420610.189121$2017 \succ 2016 \succ 2015 \succ 牛逼 \succ 2013 \succ 很好 \succ 2012 \succ 2014 \succ 2011 \succ 良 \succ 很垃圾$
80.642061<$k$< 0.6502970.008236$2017 \succ 2016 \succ 2015 \succ 牛逼 \succ 2013 \succ 2012 \succ 很好 \succ 2014 \succ 2011 \succ 良 \succ 很垃圾$
90.650297<$k$< 0.7863980.136101$2017 \succ 2016 \succ 2015 \succ 牛逼 \succ 2013 \succ 2012 \succ 很好 \succ 2011 \succ 2014 \succ 良 \succ 很垃圾$
100.786398<$k$< 0.9514090.165011$2017 \succ 2016 \succ 2015 \succ 牛逼 \succ 2013 \succ 2012 \succ 2011 \succ 很好 \succ 2014 \succ 良 \succ 很垃圾$
110.951409<$k$< 10.048591$2017 \succ 2016 \succ 2015 \succ 2013 \succ 牛逼 \succ 2012 \succ 2011 \succ 很好 \succ 2014 \succ 良 \succ 很垃圾$

AECM运算之三,层级要素所占区段统计,统计矩阵的获得


层级,序号越小越优 要素所占区段,该层级要素的的占比
0牛逼=0.101067   2017=0.898933   
12017=0.101067   牛逼=0.125142   2016=0.773791   
22016=0.226209   牛逼=0.035954   2015=0.737837   
32015=0.262163   牛逼=0.689246   2013=0.048591   
4很好=0.422854   2013=0.528555   牛逼=0.048591   
52014=0.200967   2013=0.221887   很好=0.219207   2012=0.357939   
62013=0.200967   2014=0.251973   2012=0.189121   很好=0.144337   2011=0.213602   
72012=0.45294   2014=0.197357   2011=0.136101   很好=0.213602   
82011=0.650297   2014=0.349703   
9良=1   
10很垃圾=1   

AECM运算之四,优胜与劣汰两种情境最终排序结果


情境 最优妥协解
优胜情境$牛逼 \succ 2017 \succ 2016 \succ 2015 \succ 2013 \succ 很好 \succ 2012 \succ 2014 \succ 2011 \succ 良 \succ 很垃圾$
劣汰情境 $2017 \succ 2016 \succ 2015 \succ 牛逼 \succ 2013 \succ 很好 \succ 2012 \succ 2014 \succ 2011 \succ 良 \succ 很垃圾$

扯蛋模型