解释结构模型快速排序层级分析
此处输入要素的个数:
返回首页
你没有输入参数,本处随机给出一个
| |
α | β | γ | δ | ε | ζ | η | θ | ι | κ | λ | μ | ν | ξ | ο | π | ρ | σ | τ | φ |
| α |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
| β |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
| γ |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| δ |
|
|
1 |
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
1 |
|
|
| ε |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
| ζ |
1 |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| η |
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| θ |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ι |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| κ |
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| λ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
| μ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ν |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
1 |
|
| ξ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
| ο |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
| π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ρ |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
| σ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| τ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| φ |
|
|
|
|
|
|
|
1 |
1 |
1 |
|
|
|
|
|
|
|
|
|
|
第一步:生成自乘矩阵
系统的邻接矩阵的表示
| |
α | β | γ | δ | ε | ζ | η | θ | ι | κ | λ | μ | ν | ξ | ο | π | ρ | σ | τ | φ |
| α |
1 |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
| β |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
| γ |
|
|
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| δ |
|
|
1 |
1 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
1 |
|
|
| ε |
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
| ζ |
1 |
|
|
|
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| η |
|
|
|
|
|
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| θ |
1 |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
| ι |
|
|
|
1 |
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
| κ |
|
|
1 |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
| λ |
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
1 |
|
|
|
|
|
| μ |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
| ν |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
1 |
1 |
|
| ξ |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
1 |
|
|
|
|
| ο |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
1 |
|
|
|
|
|
| π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
| ρ |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
1 |
|
|
|
| σ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
| τ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
| φ |
|
|
|
|
|
|
|
1 |
1 |
1 |
|
|
|
|
|
|
|
|
|
1 |
第二步:对系统进行环路分析,并获得一个获得一个新序
0=>α+θ
1=>σ
2=>τ
3=>ν
4=>ο
5=>β
6=>μ
7=>γ+δ
8=>ε
9=>ζ
10=>η
11=>ι
12=>κ
13=>λ
14=>π
15=>ξ
16=>ρ
17=>φ
第三步:根据环路与新序,进行矩阵缩减
分析的矩阵为:
| |
α+θ | σ | τ | ν | ο | β | μ | γ+δ | ε | ζ | η | ι | κ | λ | π | ξ | ρ | φ |
| α+θ |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| σ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| τ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ν |
|
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ο |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| β |
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| μ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| γ+δ |
|
1 |
|
|
|
|
1 |
1 |
|
|
|
|
|
|
|
|
|
|
| ε |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ζ |
1 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
| η |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
| ι |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
| κ |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
| λ |
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ξ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
| ρ |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
| φ |
1 |
|
|
|
|
|
|
|
|
|
|
1 |
1 |
|
|
|
|
|
| α+θ |
α+θ、 |
| ν |
σ、τ、 |
| ο |
ν、 |
| β |
ο、 |
| γ+δ |
σ、μ、γ+δ、 |
| ε |
σ、 |
| ζ |
α+θ、ε、 |
| η |
ζ、 |
| ι |
γ+δ、 |
| κ |
γ+δ、 |
| λ |
ο、 |
| ξ |
π、 |
| ρ |
κ、 |
| φ |
α+θ、ι、κ、 |
第四步:对无环矩阵进行缩边,也就是去掉所有的向前边!
可达矩阵:
| |
α+θ | σ | τ | ν | ο | β | μ | γ+δ | ε | ζ | η | ι | κ | λ | π | ξ | ρ | φ |
| α+θ |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| σ |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| τ |
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ν |
|
1 |
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ο |
|
1 |
1 |
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| β |
|
1 |
1 |
1 |
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
| μ |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
| γ+δ |
|
1 |
|
|
|
|
1 |
1 |
|
|
|
|
|
|
|
|
|
|
| ε |
|
1 |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
| ζ |
1 |
1 |
|
|
|
|
|
|
1 |
1 |
|
|
|
|
|
|
|
|
| η |
1 |
1 |
|
|
|
|
|
|
1 |
1 |
1 |
|
|
|
|
|
|
|
| ι |
|
1 |
|
|
|
|
1 |
1 |
|
|
|
1 |
|
|
|
|
|
|
| κ |
|
1 |
|
|
|
|
1 |
1 |
|
|
|
|
1 |
|
|
|
|
|
| λ |
|
1 |
1 |
1 |
1 |
|
|
|
|
|
|
|
|
1 |
|
|
|
|
| π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
| ξ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
1 |
|
|
| ρ |
|
1 |
|
|
|
|
1 |
1 |
|
|
|
|
1 |
|
|
|
1 |
|
| φ |
1 |
1 |
|
|
|
|
1 |
1 |
|
|
|
1 |
1 |
|
|
|
|
1 |
骨架矩阵
| |
α+θ | σ | τ | ν | ο | β | μ | γ+δ | ε | ζ | η | ι | κ | λ | π | ξ | ρ | φ |
α θ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| σ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| τ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ν |
|
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ο |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| β |
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| μ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
γ δ |
|
1 |
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
| ε |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ζ |
1 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
| η |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
| ι |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
| κ |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
| λ |
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ξ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
| ρ |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
| φ |
1 |
|
|
|
|
|
|
|
|
|
|
1 |
1 |
|
|
|
|
|
| ν |
σ、τ、 |
| ο |
ν、 |
| β |
ο、 |
| γ+δ |
σ、μ、 |
| ε |
σ、 |
| ζ |
α+θ、ε、 |
| η |
ζ、 |
| ι |
γ+δ、 |
| κ |
γ+δ、 |
| λ |
ο、 |
| ξ |
π、 |
| ρ |
κ、 |
| φ |
α+θ、ι、κ、 |
第五步:对一般性骨架矩阵进行层级分解,可以是原因优先,可以是结果优先
原因优先层级划分最终图形
结果优先层级划分最终图形
弹性势能最大,两端发散的的层级结果
弹性势能最小,中间靠拢的结果
第六步:对一般性骨架矩阵的中的活动要素进行分析
| 层级的序号 | 原因优先的方法-得到的各层级的要素 | 结果优先的方法-得到的各层级要素 | 共同有的要素 | 活动的要素 |
| 1 | σ,τ,μ | α+θ,σ,τ,μ,π | σ,τ,μ | α+θ,π |
| 2 | α+θ,ν,γ+δ,ε | ν,γ+δ,ε,ξ | ν,γ+δ,ε | α+θ,ξ |
| 3 | ο,ζ,ι,κ,π | ο,ζ,ι,κ | ο,ζ,ι,κ | π |
| 4 | β,η,λ,ξ,ρ,φ | β,η,λ,ρ,φ | β,η,λ,ρ,φ | ξ |
由上表计算得出活动的要素以及它们活动的层级:
| 要素的序号 | 要素的名称 | 要素的标题 | 开始层级 | 终止层级 |
| 0 | α+θ | α θ | 1 | 2 |
| 14 | π | π | 1 | 3 |
| 15 | ξ | ξ | 2 | 4 |
找到活动要素,并在层级中移动这些活动要素找出最好的结果。活动的要素要注意本身有因果关系的
A、分层的结果一定要符合箭头一定向上
B、不能增加层级的数目
这个方法很土鳖的,赶紧输入原始矩阵,赶紧看,3秒钟后跳转到更好的方法的页面!
化学加平台
解释结构模型
感谢化学加提供单独服务器服务器!请大家多支持化学加平台,可以多介绍人关注化学加!
对解释结构模型在线计算有什么意见与建议请发电子邮件到, hwstu #sohu.com 把#替换成 @