初始概率

$$\begin{array}{c|c|c|c|c|c|c}{M_{17 \times1}} &初始概率 P\\ \hline G1 &0.85\\ \hline G2 &0.7\\ \hline G3 &0.6\\ \hline G4 &0.7\\ \hline G5 &0.85\\ \hline G6 &0.55\\ \hline G7 &0.6\\ \hline G8 &0.75\\ \hline G9 &0.6\\ \hline G10 &0.4\\ \hline G11 &0.6\\ \hline G12 &0.55\\ \hline G13 &0.7\\ \hline G14 &0.65\\ \hline G15 &0.55\\ \hline G16 &0.75\\ \hline G17 &0.6\\ \hline \end{array} $$

概率关系矩阵

$$R=\begin{array}{c|c|c|c|c|c|c}{M_{17 \times17}} &G1 &G2 &G3 &G4 &G5 &G6 &G7 &G8 &G9 &G10 &G11 &G12 &G13 &G14 &G15 &G16 &G17\\ \hline G1 &0.875 &0.9 &0.875 &0.85 &0.9 &0.725 &0.85 &0.875 &0.85 &0.85 &0.85 &0.85 &0.85 &0.85 &0.75 &0.875 &0.85\\ \hline G2 &0.825 &0.75 &0.8 &0.7 &0.8 &0.65 &0.75 &0.75 &0.725 &0.725 &0.7 &0.725 &0.75 &0.7 &0.7 &0.7 &0.7\\ \hline G3 &0.625 &0.625 &0.7 &0.6 &0.6 &0.6 &0.6 &0.8 &0.6 &0.6 &0.6 &0.6 &0.6 &0.6 &0.625 &0.6 &0.6\\ \hline G4 &0.75 &0.7 &0.75 &0.725 &0.75 &0.7 &0.725 &0.75 &0.725 &0.725 &0.7 &0.7 &0.725 &0.7 &0.725 &0.725 &0.7\\ \hline G5 &0.9 &0.9 &0.9 &0.875 &0.85 &0.85 &0.85 &0.875 &0.85 &0.875 &0.85 &0.85 &0.85 &0.85 &0.85 &0.875 &0.85\\ \hline G6 &0.675 &0.75 &0.7 &0.65 &0.65 &0.575 &0.65 &0.7 &0.6 &0.6 &0.65 &0.795 &0.6 &0.6 &0.65 &0.575 &0.575\\ \hline G7 &0.775 &0.65 &0.8 &0.7 &0.65 &0.775 &0.65 &0.75 &0.65 &0.65 &0.725 &0.7 &0.725 &0.65 &0.55 &0.6 &0.6\\ \hline G8 &0.9 &0.775 &0.8 &0.75 &0.75 &0.775 &0.8 &0.775 &0.75 &0.775 &0.75 &0.75 &0.75 &0.75 &0.775 &0.75 &0.75\\ \hline G9 &0.65 &0.65 &0.625 &0.6 &0.625 &0.7 &0.725 &0.7 &0.6 &0.6 &0.65 &0.625 &0.65 &0.6 &0.6 &0.6 &0.6\\ \hline G10 &0.45 &0.45 &0.45 &0.425 &0.4 &0.4 &0.425 &0.425 &0.425 &0.425 &0.425 &0.4 &0.4 &0.4 &0.425 &0.425 &0.4\\ \hline G11 &0.7 &0.625 &0.775 &0.625 &0.625 &0.65 &0.6 &0.625 &0.6 &0.65 &0.625 &0.6 &0.65 &0.6 &0.55 &0.6 &0.6\\ \hline G12 &0.6 &0.6 &0.6 &0.55 &0.55 &0.795 &0.675 &0.65 &0.6 &0.575 &0.6 &0.575 &0.6 &0.65 &0.675 &0.6 &0.55\\ \hline G13 &0.8 &0.85 &0.75 &0.7 &0.7 &0.75 &0.8 &0.75 &0.725 &0.75 &0.75 &0.725 &0.75 &0.575 &0.8 &0.725 &0.7\\ \hline G14 &0.775 &0.8 &0.7 &0.675 &0.65 &0.675 &0.65 &0.7 &0.675 &0.675 &0.675 &0.75 &0.775 &0.775 &0.7 &0.65 &0.65\\ \hline G15 &0.7 &0.775 &0.65 &0.55 &0.575 &0.65 &0.45 &0.725 &0.55 &0.55 &0.6 &0.575 &0.75 &0.575 &0.725 &0.6 &0.55\\ \hline G16 &0.775 &0.775 &0.75 &0.775 &0.775 &0.775 &0.85 &0.8 &0.775 &0.775 &0.775 &0.8 &0.775 &0.75 &0.8 &0.775 &0.775\\ \hline G17 &0.65 &0.7 &0.625 &0.6 &0.6 &0.65 &0.65 &0.65 &0.65 &0.625 &0.65 &0.65 &0.65 &0.625 &0.7 &0.625 &0.65\\ \hline \end{array} $$

交叉影响矩阵的求解

$$ C_{ij}= \frac {1}{1-P_j}[ln( \frac {R_{ij}}{1-R_{ij}} ) - ln(\frac {P_i}{1-P_i} )] $$

$$CIA=\begin{array}{c|c|c|c|c|c|c}{M_{17 \times17}} &G1 &G2 &G3 &G4 &G5 &G6 &G7 &G8 &G9 &G10 &G11 &G12 &G13 &G14 &G15 &G16 &G17\\ \hline G1 &0 &1.542 &0.528 &0 &3.084 &-1.7 &0 &0.845 &0 &0 &0 &0 &0 &0 &-1.413 &0.845 &0\\ \hline G2 &4.689 &0 &1.347 &0 &3.593 &-0.507 &0.628 &1.005 &0.305 &0.204 &0 &0.271 &0.838 &0 &0 &0 &0\\ \hline G3 &0.702 &0.351 &0 &0 &0 &0 &0 &3.923 &0 &0 &0 &0 &0 &0 &0.234 &0 &0\\ \hline G4 &1.675 &0 &0.628 &0 &1.675 &0 &0.305 &1.005 &0.305 &0.204 &0 &0 &0.407 &0 &0.271 &0.488 &0\\ \hline G5 &3.084 &1.542 &1.157 &0.704 &0 &0 &0 &0.845 &0 &0.352 &0 &0 &0 &0 &0 &0.845 &0\\ \hline G6 &3.535 &2.993 &1.617 &1.395 &2.789 &0 &1.046 &2.587 &0.512 &0.341 &1.046 &2.566 &0.683 &0.585 &0.93 &0.406 &0.254\\ \hline G7 &5.542 &0.712 &2.452 &1.473 &1.424 &1.847 &0 &2.773 &0.534 &0.356 &1.41 &0.982 &1.88 &0.61 &-0.455 &0 &0\\ \hline G8 &7.324 &0.461 &0.719 &0 &0 &0.307 &0.719 &0 &0 &0.23 &0 &0 &0 &0 &0.307 &0 &0\\ \hline G9 &1.424 &0.712 &0.263 &0 &0.702 &0.982 &1.41 &1.767 &0 &0 &0.534 &0.234 &0.712 &0 &0 &0 &0\\ \hline G10 &1.365 &0.683 &0.512 &0.344 &0 &0 &0.258 &0.413 &0.258 &0 &0.258 &0 &0 &0 &0.229 &0.413 &0\\ \hline G11 &2.946 &0.351 &2.078 &0.351 &0.702 &0.475 &0 &0.421 &0 &0.356 &0 &0 &0.712 &0 &-0.455 &0 &0\\ \hline G12 &1.365 &0.683 &0.512 &0 &0 &2.566 &1.326 &1.673 &0.512 &0.169 &0.512 &0 &0.683 &1.195 &1.178 &0.819 &0\\ \hline G13 &3.593 &2.958 &0.628 &0 &0 &0.558 &1.347 &1.005 &0.305 &0.419 &0.628 &0.271 &0 &-1.557 &1.198 &0.488 &0\\ \hline G14 &4.118 &2.558 &0.571 &0.373 &0 &0.249 &0 &0.913 &0.28 &0.186 &0.28 &1.066 &2.059 &0 &0.507 &0 &0\\ \hline G15 &4.311 &3.454 &1.046 &0 &0.677 &0.93 &-1.003 &3.075 &0 &0 &0.512 &0.226 &2.993 &0.29 &0 &0.819 &0\\ \hline G16 &0.921 &0.461 &0 &0.461 &0.921 &0.307 &1.59 &1.151 &0.345 &0.23 &0.345 &0.639 &0.461 &0 &0.639 &0 &0.345\\ \hline G17 &1.424 &1.473 &0.263 &0 &0 &0.475 &0.534 &0.854 &0.534 &0.176 &0.534 &0.475 &0.712 &0.301 &0.982 &0.421 &0\\ \hline \end{array} $$

交叉影响矩阵转置

$$Ori=\begin{array}{c|c|c|c|c|c|c}{M_{17 \times17}} &G1 &G2 &G3 &G4 &G5 &G6 &G7 &G8 &G9 &G10 &G11 &G12 &G13 &G14 &G15 &G16 &G17\\ \hline G1 &0 &4.68866 &0.7024 &1.67543 &3.08416 &3.53478 &5.54198 &7.32408 &1.42383 &1.3653 &2.94555 &1.3653 &3.59331 &4.11816 &4.31085 &0.921 &1.42383\\ \hline G2 &1.54208 &0 &0.3512 &0 &1.54208 &2.99314 &0.71191 &0.4605 &0.71191 &0.68265 &0.3512 &0.68265 &2.95768 &2.55752 &3.45364 &0.4605 &1.47278\\ \hline G3 &0.52827 &1.34749 &0 &0.62829 &1.15656 &1.61657 &2.45207 &0.71921 &0.2634 &0.51199 &2.07824 &0.51199 &0.62829 &0.57065 &1.04592 &0 &0.2634\\ \hline G4 &0 &0 &0 &0 &0.70436 &1.39456 &1.47278 &0 &0 &0.34395 &0.3512 &0 &0 &0.37283 &0 &0.4605 &0\\ \hline G5 &3.08416 &3.59331 &0 &1.67543 &0 &2.78912 &1.42383 &0 &0.7024 &0 &0.7024 &0 &0 &0 &0.6774 &0.921 &0\\ \hline G6 &-1.70045 &-0.50724 &0 &0 &0 &0 &1.84733 &0.307 &0.98185 &0 &0.47461 &2.56591 &0.55848 &0.24855 &0.92971 &0.307 &0.47461\\ \hline G7 &0 &0.62829 &0 &0.30526 &0 &1.04592 &0 &0.71921 &1.40984 &0.25796 &0 &1.32554 &1.34749 &0 &-1.00335 &1.58997 &0.53394\\ \hline G8 &0.84524 &1.00526 &3.92332 &1.00526 &0.84524 &2.58651 &2.77259 &0 &1.76733 &0.41274 &0.42144 &1.67347 &1.00526 &0.91303 &3.07492 &1.15073 &0.8543\\ \hline G9 &0 &0.30526 &0 &0.30526 &0 &0.51199 &0.53394 &0 &0 &0.25796 &0 &0.51199 &0.30526 &0.27962 &0 &0.34538 &0.53394\\ \hline G10 &0 &0.2035 &0 &0.2035 &0.35218 &0.34132 &0.35596 &0.23025 &0 &0 &0.35596 &0.16935 &0.41886 &0.18641 &0 &0.23025 &0.1756\\ \hline G11 &0 &0 &0 &0 &0 &1.04592 &1.40984 &0 &0.53394 &0.25796 &0 &0.51199 &0.62829 &0.27962 &0.51199 &0.34538 &0.53394\\ \hline G12 &0 &0.27134 &0 &0 &0 &2.56591 &0.98185 &0 &0.23413 &0 &0 &0 &0.27134 &1.06572 &0.2258 &0.63929 &0.47461\\ \hline G13 &0 &0.83771 &0 &0.40701 &0 &0.68265 &1.87978 &0 &0.71191 &0 &0.71191 &0.68265 &0 &2.05908 &2.99314 &0.4605 &0.71191\\ \hline G14 &0 &0 &0 &0 &0 &0.58513 &0.61021 &0 &0 &0 &0 &1.19534 &-1.55719 &0 &0.29031 &0 &0.30103\\ \hline G15 &-1.41331 &0 &0.23413 &0.27134 &0 &0.92971 &-0.4551 &0.307 &0 &0.2293 &-0.4551 &1.17826 &1.19777 &0.50724 &0 &0.63929 &0.98185\\ \hline G16 &0.84524 &0 &0 &0.48841 &0.84524 &0.40644 &0 &0 &0 &0.41274 &0 &0.81918 &0.48841 &0 &0.81918 &0 &0.42144\\ \hline G17 &0 &0 &0 &0 &0 &0.25403 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.34538 &0\\ \hline \end{array} $$

对称化矩阵,平移与更改符号得到手性对称矩阵

$$\begin{array} {c|ccccccccccccccccc|ccccccccccccccccc}{M_{34 \times34}} &+G1 &+G2 &+G3 &+G4 &+G5 &+G6 &+G7 &+G8 &+G9 &+G10 &+G11 &+G12 &+G13 &+G14 &+G15 &+G16 &+G17 &-G1 &-G2 &-G3 &-G4 &-G5 &-G6 &-G7 &-G8 &-G9 &-G10 &-G11 &-G12 &-G13 &-G14 &-G15 &-G16 &-G17\\ \hline +G1 &0 &\color{blue}{4.689} &\color{blue}{0.702} &\color{blue}{1.675} &\color{blue}{3.084} &\color{blue}{3.535} &\color{blue}{5.542} &\color{blue}{7.324} &\color{blue}{1.424} &\color{blue}{1.365} &\color{blue}{2.946} &\color{blue}{1.365} &\color{blue}{3.593} &\color{blue}{4.118} &\color{blue}{4.311} &\color{blue}{0.921} &\color{blue}{1.424} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +G2 &\color{blue}{1.542} &0 &\color{blue}{0.351} &0 &\color{blue}{1.542} &\color{blue}{2.993} &\color{blue}{0.712} &\color{blue}{0.461} &\color{blue}{0.712} &\color{blue}{0.683} &\color{blue}{0.351} &\color{blue}{0.683} &\color{blue}{2.958} &\color{blue}{2.558} &\color{blue}{3.454} &\color{blue}{0.461} &\color{blue}{1.473} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +G3 &\color{blue}{0.528} &\color{blue}{1.347} &0 &\color{blue}{0.628} &\color{blue}{1.157} &\color{blue}{1.617} &\color{blue}{2.452} &\color{blue}{0.719} &\color{blue}{0.263} &\color{blue}{0.512} &\color{blue}{2.078} &\color{blue}{0.512} &\color{blue}{0.628} &\color{blue}{0.571} &\color{blue}{1.046} &0 &\color{blue}{0.263} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +G4 &0 &0 &0 &0 &\color{blue}{0.704} &\color{blue}{1.395} &\color{blue}{1.473} &0 &0 &\color{blue}{0.344} &\color{blue}{0.351} &0 &0 &\color{blue}{0.373} &0 &\color{blue}{0.461} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +G5 &\color{blue}{3.084} &\color{blue}{3.593} &0 &\color{blue}{1.675} &0 &\color{blue}{2.789} &\color{blue}{1.424} &0 &\color{blue}{0.702} &0 &\color{blue}{0.702} &0 &0 &0 &\color{blue}{0.677} &\color{blue}{0.921} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +G6 &0 &0 &0 &0 &0 &0 &\color{blue}{1.847} &\color{blue}{0.307} &\color{blue}{0.982} &0 &\color{blue}{0.475} &\color{blue}{2.566} &\color{blue}{0.558} &\color{blue}{0.249} &\color{blue}{0.93} &\color{blue}{0.307} &\color{blue}{0.475} &\color{red}{1.7} &\color{red}{0.507} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +G7 &0 &\color{blue}{0.628} &0 &\color{blue}{0.305} &0 &\color{blue}{1.046} &0 &\color{blue}{0.719} &\color{blue}{1.41} &\color{blue}{0.258} &0 &\color{blue}{1.326} &\color{blue}{1.347} &0 &0 &\color{blue}{1.59} &\color{blue}{0.534} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{1.003} &0 &0\\ +G8 &\color{blue}{0.845} &\color{blue}{1.005} &\color{blue}{3.923} &\color{blue}{1.005} &\color{blue}{0.845} &\color{blue}{2.587} &\color{blue}{2.773} &0 &\color{blue}{1.767} &\color{blue}{0.413} &\color{blue}{0.421} &\color{blue}{1.673} &\color{blue}{1.005} &\color{blue}{0.913} &\color{blue}{3.075} &\color{blue}{1.151} &\color{blue}{0.854} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +G9 &0 &\color{blue}{0.305} &0 &\color{blue}{0.305} &0 &\color{blue}{0.512} &\color{blue}{0.534} &0 &0 &\color{blue}{0.258} &0 &\color{blue}{0.512} &\color{blue}{0.305} &\color{blue}{0.28} &0 &\color{blue}{0.345} &\color{blue}{0.534} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +G10 &0 &\color{blue}{0.204} &0 &\color{blue}{0.204} &\color{blue}{0.352} &\color{blue}{0.341} &\color{blue}{0.356} &\color{blue}{0.23} &0 &0 &\color{blue}{0.356} &\color{blue}{0.169} &\color{blue}{0.419} &\color{blue}{0.186} &0 &\color{blue}{0.23} &\color{blue}{0.176} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +G11 &0 &0 &0 &0 &0 &\color{blue}{1.046} &\color{blue}{1.41} &0 &\color{blue}{0.534} &\color{blue}{0.258} &0 &\color{blue}{0.512} &\color{blue}{0.628} &\color{blue}{0.28} &\color{blue}{0.512} &\color{blue}{0.345} &\color{blue}{0.534} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +G12 &0 &\color{blue}{0.271} &0 &0 &0 &\color{blue}{2.566} &\color{blue}{0.982} &0 &\color{blue}{0.234} &0 &0 &0 &\color{blue}{0.271} &\color{blue}{1.066} &\color{blue}{0.226} &\color{blue}{0.639} &\color{blue}{0.475} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +G13 &0 &\color{blue}{0.838} &0 &\color{blue}{0.407} &0 &\color{blue}{0.683} &\color{blue}{1.88} &0 &\color{blue}{0.712} &0 &\color{blue}{0.712} &\color{blue}{0.683} &0 &\color{blue}{2.059} &\color{blue}{2.993} &\color{blue}{0.461} &\color{blue}{0.712} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +G14 &0 &0 &0 &0 &0 &\color{blue}{0.585} &\color{blue}{0.61} &0 &0 &0 &0 &\color{blue}{1.195} &0 &0 &\color{blue}{0.29} &0 &\color{blue}{0.301} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{1.557} &0 &0 &0 &0\\ +G15 &0 &0 &\color{blue}{0.234} &\color{blue}{0.271} &0 &\color{blue}{0.93} &0 &\color{blue}{0.307} &0 &\color{blue}{0.229} &0 &\color{blue}{1.178} &\color{blue}{1.198} &\color{blue}{0.507} &0 &\color{blue}{0.639} &\color{blue}{0.982} &\color{red}{1.413} &0 &0 &0 &0 &0 &\color{red}{0.455} &0 &0 &0 &\color{red}{0.455} &0 &0 &0 &0 &0 &0\\ +G16 &\color{blue}{0.845} &0 &0 &\color{blue}{0.488} &\color{blue}{0.845} &\color{blue}{0.406} &0 &0 &0 &\color{blue}{0.413} &0 &\color{blue}{0.819} &\color{blue}{0.488} &0 &\color{blue}{0.819} &0 &\color{blue}{0.421} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +G17 &0 &0 &0 &0 &0 &\color{blue}{0.254} &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.345} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline -G1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{4.689} &\color{blue}{0.702} &\color{blue}{1.675} &\color{blue}{3.084} &\color{blue}{3.535} &\color{blue}{5.542} &\color{blue}{7.324} &\color{blue}{1.424} &\color{blue}{1.365} &\color{blue}{2.946} &\color{blue}{1.365} &\color{blue}{3.593} &\color{blue}{4.118} &\color{blue}{4.311} &\color{blue}{0.921} &\color{blue}{1.424}\\ -G2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{1.542} &0 &\color{blue}{0.351} &0 &\color{blue}{1.542} &\color{blue}{2.993} &\color{blue}{0.712} &\color{blue}{0.461} &\color{blue}{0.712} &\color{blue}{0.683} &\color{blue}{0.351} &\color{blue}{0.683} &\color{blue}{2.958} &\color{blue}{2.558} &\color{blue}{3.454} &\color{blue}{0.461} &\color{blue}{1.473}\\ -G3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.528} &\color{blue}{1.347} &0 &\color{blue}{0.628} &\color{blue}{1.157} &\color{blue}{1.617} &\color{blue}{2.452} &\color{blue}{0.719} &\color{blue}{0.263} &\color{blue}{0.512} &\color{blue}{2.078} &\color{blue}{0.512} &\color{blue}{0.628} &\color{blue}{0.571} &\color{blue}{1.046} &0 &\color{blue}{0.263}\\ -G4 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.704} &\color{blue}{1.395} &\color{blue}{1.473} &0 &0 &\color{blue}{0.344} &\color{blue}{0.351} &0 &0 &\color{blue}{0.373} &0 &\color{blue}{0.461} &0\\ -G5 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{3.084} &\color{blue}{3.593} &0 &\color{blue}{1.675} &0 &\color{blue}{2.789} &\color{blue}{1.424} &0 &\color{blue}{0.702} &0 &\color{blue}{0.702} &0 &0 &0 &\color{blue}{0.677} &\color{blue}{0.921} &0\\ -G6 &\color{red}{1.7} &\color{red}{0.507} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{1.847} &\color{blue}{0.307} &\color{blue}{0.982} &0 &\color{blue}{0.475} &\color{blue}{2.566} &\color{blue}{0.558} &\color{blue}{0.249} &\color{blue}{0.93} &\color{blue}{0.307} &\color{blue}{0.475}\\ -G7 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{1.003} &0 &0 &0 &\color{blue}{0.628} &0 &\color{blue}{0.305} &0 &\color{blue}{1.046} &0 &\color{blue}{0.719} &\color{blue}{1.41} &\color{blue}{0.258} &0 &\color{blue}{1.326} &\color{blue}{1.347} &0 &0 &\color{blue}{1.59} &\color{blue}{0.534}\\ -G8 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.845} &\color{blue}{1.005} &\color{blue}{3.923} &\color{blue}{1.005} &\color{blue}{0.845} &\color{blue}{2.587} &\color{blue}{2.773} &0 &\color{blue}{1.767} &\color{blue}{0.413} &\color{blue}{0.421} &\color{blue}{1.673} &\color{blue}{1.005} &\color{blue}{0.913} &\color{blue}{3.075} &\color{blue}{1.151} &\color{blue}{0.854}\\ -G9 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.305} &0 &\color{blue}{0.305} &0 &\color{blue}{0.512} &\color{blue}{0.534} &0 &0 &\color{blue}{0.258} &0 &\color{blue}{0.512} &\color{blue}{0.305} &\color{blue}{0.28} &0 &\color{blue}{0.345} &\color{blue}{0.534}\\ -G10 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.204} &0 &\color{blue}{0.204} &\color{blue}{0.352} &\color{blue}{0.341} &\color{blue}{0.356} &\color{blue}{0.23} &0 &0 &\color{blue}{0.356} &\color{blue}{0.169} &\color{blue}{0.419} &\color{blue}{0.186} &0 &\color{blue}{0.23} &\color{blue}{0.176}\\ -G11 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{1.046} &\color{blue}{1.41} &0 &\color{blue}{0.534} &\color{blue}{0.258} &0 &\color{blue}{0.512} &\color{blue}{0.628} &\color{blue}{0.28} &\color{blue}{0.512} &\color{blue}{0.345} &\color{blue}{0.534}\\ -G12 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.271} &0 &0 &0 &\color{blue}{2.566} &\color{blue}{0.982} &0 &\color{blue}{0.234} &0 &0 &0 &\color{blue}{0.271} &\color{blue}{1.066} &\color{blue}{0.226} &\color{blue}{0.639} &\color{blue}{0.475}\\ -G13 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.838} &0 &\color{blue}{0.407} &0 &\color{blue}{0.683} &\color{blue}{1.88} &0 &\color{blue}{0.712} &0 &\color{blue}{0.712} &\color{blue}{0.683} &0 &\color{blue}{2.059} &\color{blue}{2.993} &\color{blue}{0.461} &\color{blue}{0.712}\\ -G14 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{1.557} &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.585} &\color{blue}{0.61} &0 &0 &0 &0 &\color{blue}{1.195} &0 &0 &\color{blue}{0.29} &0 &\color{blue}{0.301}\\ -G15 &\color{red}{1.413} &0 &0 &0 &0 &0 &\color{red}{0.455} &0 &0 &0 &\color{red}{0.455} &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.234} &\color{blue}{0.271} &0 &\color{blue}{0.93} &0 &\color{blue}{0.307} &0 &\color{blue}{0.229} &0 &\color{blue}{1.178} &\color{blue}{1.198} &\color{blue}{0.507} &0 &\color{blue}{0.639} &\color{blue}{0.982}\\ -G16 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.845} &0 &0 &\color{blue}{0.488} &\color{blue}{0.845} &\color{blue}{0.406} &0 &0 &0 &\color{blue}{0.413} &0 &\color{blue}{0.819} &\color{blue}{0.488} &0 &\color{blue}{0.819} &0 &\color{blue}{0.421}\\ -G17 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.254} &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.345} &0\\ \hline \end{array} $$

基于截距的聚类分析

手性对称矩阵的阈值集合$\ddot \Delta $ 得出对应 39个结构。

序号 阈值集合中——特征阈值 聚类特征-对应截距$\lambda $数值区段 ISM运算过程
10.169350<$\lambda$<0.1694
20.35120.1694<$\lambda$<0.3512
30.421440.3512<$\lambda$<0.4214
40.558480.4214<$\lambda$<0.5585
50.85430.5585<$\lambda$<0.8543
61.36530.8543<$\lambda$<1.3653
71.394561.3653<$\lambda$<1.3946
81.409841.3946<$\lambda$<1.4098
91.413311.4098<$\lambda$<1.4133
101.423831.4133<$\lambda$<1.4238
111.542081.4238<$\lambda$<1.5421
121.589971.5421<$\lambda$<1.59
131.616571.59<$\lambda$<1.6166
141.673471.6166<$\lambda$<1.6735
151.700451.6735<$\lambda$<1.7004
161.767331.7004<$\lambda$<1.7673
171.847331.7673<$\lambda$<1.8473
181.879781.8473<$\lambda$<1.8798
192.059081.8798<$\lambda$<2.0591
202.078242.0591<$\lambda$<2.0782
212.452072.0782<$\lambda$<2.4521
222.557522.4521<$\lambda$<2.5575
232.565912.5575<$\lambda$<2.5659
242.586512.5659<$\lambda$<2.5865
252.772592.5865<$\lambda$<2.7726
262.789122.7726<$\lambda$<2.7891
272.957682.7891<$\lambda$<2.9577
282.993142.9577<$\lambda$<2.9931
293.074922.9931<$\lambda$<3.0749
303.084163.0749<$\lambda$<3.0842
313.453643.0842<$\lambda$<3.4536
323.534783.4536<$\lambda$<3.5348
333.593313.5348<$\lambda$<3.5933
343.923323.5933<$\lambda$<3.9233
354.118163.9233<$\lambda$<4.1182
364.310854.1182<$\lambda$<4.3108
374.688664.3108<$\lambda$<4.6887
385.541984.6887<$\lambda$<5.542
397.324085.542<$\lambda$<7.3241

取绝对值,不进行平移对称化矩阵如下:

$$ABS-ORI=\begin{array}{c|c|c|c|c|c|c}{M_{17 \times17}} &G1 &G2 &G3 &G4 &G5 &G6 &G7 &G8 &G9 &G10 &G11 &G12 &G13 &G14 &G15 &G16 &G17\\ \hline G1 &0 &4.68866 &0.7024 &1.67543 &3.08416 &3.53478 &5.54198 &7.32408 &1.42383 &1.3653 &2.94555 &1.3653 &3.59331 &4.11816 &4.31085 &0.921 &1.42383\\ \hline G2 &1.54208 &0 &0.3512 &0 &1.54208 &2.99314 &0.71191 &0.4605 &0.71191 &0.68265 &0.3512 &0.68265 &2.95768 &2.55752 &3.45364 &0.4605 &1.47278\\ \hline G3 &0.52827 &1.34749 &0 &0.62829 &1.15656 &1.61657 &2.45207 &0.71921 &0.2634 &0.51199 &2.07824 &0.51199 &0.62829 &0.57065 &1.04592 &0 &0.2634\\ \hline G4 &0 &0 &0 &0 &0.70436 &1.39456 &1.47278 &0 &0 &0.34395 &0.3512 &0 &0 &0.37283 &0 &0.4605 &0\\ \hline G5 &3.08416 &3.59331 &0 &1.67543 &0 &2.78912 &1.42383 &0 &0.7024 &0 &0.7024 &0 &0 &0 &0.6774 &0.921 &0\\ \hline G6 &1.70045 &0.50724 &0 &0 &0 &0 &1.84733 &0.307 &0.98185 &0 &0.47461 &2.56591 &0.55848 &0.24855 &0.92971 &0.307 &0.47461\\ \hline G7 &0 &0.62829 &0 &0.30526 &0 &1.04592 &0 &0.71921 &1.40984 &0.25796 &0 &1.32554 &1.34749 &0 &1.00335 &1.58997 &0.53394\\ \hline G8 &0.84524 &1.00526 &3.92332 &1.00526 &0.84524 &2.58651 &2.77259 &0 &1.76733 &0.41274 &0.42144 &1.67347 &1.00526 &0.91303 &3.07492 &1.15073 &0.8543\\ \hline G9 &0 &0.30526 &0 &0.30526 &0 &0.51199 &0.53394 &0 &0 &0.25796 &0 &0.51199 &0.30526 &0.27962 &0 &0.34538 &0.53394\\ \hline G10 &0 &0.2035 &0 &0.2035 &0.35218 &0.34132 &0.35596 &0.23025 &0 &0 &0.35596 &0.16935 &0.41886 &0.18641 &0 &0.23025 &0.1756\\ \hline G11 &0 &0 &0 &0 &0 &1.04592 &1.40984 &0 &0.53394 &0.25796 &0 &0.51199 &0.62829 &0.27962 &0.51199 &0.34538 &0.53394\\ \hline G12 &0 &0.27134 &0 &0 &0 &2.56591 &0.98185 &0 &0.23413 &0 &0 &0 &0.27134 &1.06572 &0.2258 &0.63929 &0.47461\\ \hline G13 &0 &0.83771 &0 &0.40701 &0 &0.68265 &1.87978 &0 &0.71191 &0 &0.71191 &0.68265 &0 &2.05908 &2.99314 &0.4605 &0.71191\\ \hline G14 &0 &0 &0 &0 &0 &0.58513 &0.61021 &0 &0 &0 &0 &1.19534 &1.55719 &0 &0.29031 &0 &0.30103\\ \hline G15 &1.41331 &0 &0.23413 &0.27134 &0 &0.92971 &0.4551 &0.307 &0 &0.2293 &0.4551 &1.17826 &1.19777 &0.50724 &0 &0.63929 &0.98185\\ \hline G16 &0.84524 &0 &0 &0.48841 &0.84524 &0.40644 &0 &0 &0 &0.41274 &0 &0.81918 &0.48841 &0 &0.81918 &0 &0.42144\\ \hline G17 &0 &0 &0 &0 &0 &0.25403 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.34538 &0\\ \hline \end{array} $$

基于截距的聚类分析

手性对称矩阵的阈值集合$\ddot \Delta $ 得出对应 39个结构。

序号 阈值集合中——特征阈值 聚类特征-对应截距$\lambda $数值区段 ISM运算过程
100<$\lambda$<0
20.35120<$\lambda$<0.3512
30.421440.3512<$\lambda$<0.4214
40.558480.4214<$\lambda$<0.5585
50.85430.5585<$\lambda$<0.8543
61.36530.8543<$\lambda$<1.3653
71.394561.3653<$\lambda$<1.3946
81.409841.3946<$\lambda$<1.4098
91.413311.4098<$\lambda$<1.4133
101.423831.4133<$\lambda$<1.4238
111.542081.4238<$\lambda$<1.5421
121.589971.5421<$\lambda$<1.59
131.616571.59<$\lambda$<1.6166
141.673471.6166<$\lambda$<1.6735
151.700451.6735<$\lambda$<1.7004
161.767331.7004<$\lambda$<1.7673
171.847331.7673<$\lambda$<1.8473
181.879781.8473<$\lambda$<1.8798
192.059081.8798<$\lambda$<2.0591
202.078242.0591<$\lambda$<2.0782
212.452072.0782<$\lambda$<2.4521
222.557522.4521<$\lambda$<2.5575
232.565912.5575<$\lambda$<2.5659
242.586512.5659<$\lambda$<2.5865
252.772592.5865<$\lambda$<2.7726
262.789122.7726<$\lambda$<2.7891
272.957682.7891<$\lambda$<2.9577
282.993142.9577<$\lambda$<2.9931
293.074922.9931<$\lambda$<3.0749
303.084163.0749<$\lambda$<3.0842
313.453643.0842<$\lambda$<3.4536
323.534783.4536<$\lambda$<3.5348
333.593313.5348<$\lambda$<3.5933
343.923323.5933<$\lambda$<3.9233
354.118163.9233<$\lambda$<4.1182
364.310854.1182<$\lambda$<4.3108
374.688664.3108<$\lambda$<4.6887
385.541984.6887<$\lambda$<5.542
397.324085.542<$\lambda$<7.3241