初始概率
$$\begin{array}{c|c|c|c|c|c|c}{M_{10 \times1}} &初始概率 P\\
\hline A &0.5\\
\hline B &0.3\\
\hline C &0.6\\
\hline D &0.5\\
\hline E &0.4\\
\hline F &0.3\\
\hline G &0.6\\
\hline H &0.2\\
\hline I &0.1\\
\hline J &0.6\\
\hline \end{array} $$
概率关系矩阵
$$R=\begin{array}{c|c|c|c|c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\
\hline A &0 &0.45 &0 &0.4 &0.45 &0.75 &0 &0.45 &0.45 &0\\
\hline B &0.25 &0 &0.28 &0.35 &0 &0.2 &0.38 &0.35 &0.35 &0.34\\
\hline C &0.55 &0.65 &0 &0.65 &0.7 &0.5 &0 &0.65 &0.65 &0.66\\
\hline D &0.4 &0.6 &0.51 &0 &0.55 &0.3 &0.53 &0.55 &0.55 &0.53\\
\hline E &0.3 &0.5 &0.39 &0.5 &0 &0.35 &0.47 &0 &0 &0.43\\
\hline F &0.4 &0.25 &0 &0.1 &0.25 &0 &0.27 &0.25 &0.25 &0.27\\
\hline G &0.55 &0.75 &0 &0.7 &0.75 &0.55 &0 &0 &0 &0.66\\
\hline H &0.1 &0.15 &0 &0.25 &0.25 &0.1 &0 &0 &0.3 &0.24\\
\hline I &0.05 &0 &0 &0.15 &0 &0.05 &0.15 &0.2 &0 &0.15\\
\hline J &0.55 &0.75 &0.59 &0.7 &0.75 &0.5 &0.66 &0 &0 &0\\
\hline \end{array} $$
交叉影响矩阵的求解
$$ C_{ij}= \frac {1}{1-P_j}[ln( \frac {R_{ij}}{1-R_{ij}} ) - ln(\frac {P_i}{1-P_i} )] $$
$$CIA=\begin{array}{c|c|c|c|c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\
\hline A &0 &-0.287 &0 &-0.811 &-0.334 &1.569 &0 &-0.251 &-0.223 &0\\
\hline B &-0.503 &0 &-0.243 &0.457 &0 &-0.77 &0.894 &0.285 &0.254 &0.46\\
\hline C &-0.41 &0.305 &0 &0.427 &0.736 &-0.579 &0 &0.267 &0.237 &0.645\\
\hline D &-0.811 &0.579 &0.1 &0 &0.334 &-1.21 &0.3 &0.251 &0.223 &0.3\\
\hline E &-0.884 &0.579 &-0.105 &0.811 &0 &-0.305 &0.713 &0 &0 &0.309\\
\hline F &0.884 &-0.359 &0 &-2.7 &-0.419 &0 &-0.368 &-0.314 &-0.279 &-0.368\\
\hline G &-0.41 &0.99 &0 &0.884 &1.155 &-0.293 &0 &0 &0 &0.645\\
\hline H &-1.622 &-0.498 &0 &0.575 &0.479 &-1.158 &0 &0 &0.599 &0.584\\
\hline I &-1.494 &0 &0 &0.925 &0 &-1.067 &1.157 &1.014 &0 &1.157\\
\hline J &-0.41 &0.99 &-0.104 &0.884 &1.155 &-0.579 &0.645 &0 &0 &0\\
\hline \end{array} $$
交叉影响矩阵转置
$$Ori=\begin{array}{c|c|c|c|c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\
\hline A &0 &-0.50263 &-0.40959 &-0.81093 &-0.88367 &0.88367 &-0.40959 &-1.62186 &-1.49443 &-0.40959\\
\hline B &-0.28667 &0 &0.30511 &0.57924 &0.57924 &-0.35902 &0.99021 &-0.49758 &0 &0.99021\\
\hline C &0 &-0.24291 &0 &0.10001 &-0.10462 &0 &0 &0 &0 &-0.10375\\
\hline D &-0.81093 &0.45652 &0.42715 &0 &0.81093 &-2.69985 &0.88367 &0.57536 &0.92525 &0.88367\\
\hline E &-0.33445 &0 &0.73639 &0.33445 &0 &-0.41886 &1.15525 &0.47947 &0 &1.15525\\
\hline F &1.56945 &-0.77 &-0.57924 &-1.21043 &-0.30511 &0 &-0.29256 &-1.15847 &-1.06745 &-0.57924\\
\hline G &0 &0.89437 &0 &0.30036 &0.7133 &-0.36831 &0 &0 &1.15656 &0.64457\\
\hline H &-0.25084 &0.28532 &0.26697 &0.25084 &0 &-0.31414 &0 &0 &1.01366 &0\\
\hline I &-0.22297 &0.25362 &0.2373 &0.22297 &0 &-0.27924 &0 &0.59889 &0 &0\\
\hline J &0 &0.46001 &0.64457 &0.30036 &0.30903 &-0.36831 &0.64457 &0.58404 &1.15656 &0\\
\hline \end{array} $$
对称化矩阵,平移与更改符号得到手性对称矩阵
$$\begin{array} {c|cccccccccc|cccccccccc}{M_{20 \times20}} &+A &+B &+C &+D &+E &+F &+G &+H &+I &+J &-A &-B &-C &-D &-E &-F &-G &-H &-I &-J\\
\hline
+A &0 &0 &0 &0 &0 &\color{blue}{0.884} &0 &0 &0 &0 &0 &\color{red}{0.503} &\color{red}{0.41} &\color{red}{0.811} &\color{red}{0.884} &0 &\color{red}{0.41} &\color{red}{1.622} &\color{red}{1.494} &\color{red}{0.41}\\
+B &0 &0 &\color{blue}{0.305} &\color{blue}{0.579} &\color{blue}{0.579} &0 &\color{blue}{0.99} &0 &0 &\color{blue}{0.99} &\color{red}{0.287} &0 &0 &0 &0 &\color{red}{0.359} &0 &\color{red}{0.498} &0 &0\\
+C &0 &0 &0 &\color{blue}{0.1} &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.243} &0 &0 &\color{red}{0.105} &0 &0 &0 &0 &\color{red}{0.104}\\
+D &0 &\color{blue}{0.457} &\color{blue}{0.427} &0 &\color{blue}{0.811} &0 &\color{blue}{0.884} &\color{blue}{0.575} &\color{blue}{0.925} &\color{blue}{0.884} &\color{red}{0.811} &0 &0 &0 &0 &\color{red}{2.7} &0 &0 &0 &0\\
+E &0 &0 &\color{blue}{0.736} &\color{blue}{0.334} &0 &0 &\color{blue}{1.155} &\color{blue}{0.479} &0 &\color{blue}{1.155} &\color{red}{0.334} &0 &0 &0 &0 &\color{red}{0.419} &0 &0 &0 &0\\
+F &\color{blue}{1.569} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.77} &\color{red}{0.579} &\color{red}{1.21} &\color{red}{0.305} &0 &\color{red}{0.293} &\color{red}{1.158} &\color{red}{1.067} &\color{red}{0.579}\\
+G &0 &\color{blue}{0.894} &0 &\color{blue}{0.3} &\color{blue}{0.713} &0 &0 &0 &\color{blue}{1.157} &\color{blue}{0.645} &0 &0 &0 &0 &0 &\color{red}{0.368} &0 &0 &0 &0\\
+H &0 &\color{blue}{0.285} &\color{blue}{0.267} &\color{blue}{0.251} &0 &0 &0 &0 &\color{blue}{1.014} &0 &\color{red}{0.251} &0 &0 &0 &0 &\color{red}{0.314} &0 &0 &0 &0\\
+I &0 &\color{blue}{0.254} &\color{blue}{0.237} &\color{blue}{0.223} &0 &0 &0 &\color{blue}{0.599} &0 &0 &\color{red}{0.223} &0 &0 &0 &0 &\color{red}{0.279} &0 &0 &0 &0\\
+J &0 &\color{blue}{0.46} &\color{blue}{0.645} &\color{blue}{0.3} &\color{blue}{0.309} &0 &\color{blue}{0.645} &\color{blue}{0.584} &\color{blue}{1.157} &0 &0 &0 &0 &0 &0 &\color{red}{0.368} &0 &0 &0 &0\\
\hline
-A &0 &\color{red}{0.503} &\color{red}{0.41} &\color{red}{0.811} &\color{red}{0.884} &0 &\color{red}{0.41} &\color{red}{1.622} &\color{red}{1.494} &\color{red}{0.41} &0 &0 &0 &0 &0 &\color{blue}{0.884} &0 &0 &0 &0\\
-B &\color{red}{0.287} &0 &0 &0 &0 &\color{red}{0.359} &0 &\color{red}{0.498} &0 &0 &0 &0 &\color{blue}{0.305} &\color{blue}{0.579} &\color{blue}{0.579} &0 &\color{blue}{0.99} &0 &0 &\color{blue}{0.99}\\
-C &0 &\color{red}{0.243} &0 &0 &\color{red}{0.105} &0 &0 &0 &0 &\color{red}{0.104} &0 &0 &0 &\color{blue}{0.1} &0 &0 &0 &0 &0 &0\\
-D &\color{red}{0.811} &0 &0 &0 &0 &\color{red}{2.7} &0 &0 &0 &0 &0 &\color{blue}{0.457} &\color{blue}{0.427} &0 &\color{blue}{0.811} &0 &\color{blue}{0.884} &\color{blue}{0.575} &\color{blue}{0.925} &\color{blue}{0.884}\\
-E &\color{red}{0.334} &0 &0 &0 &0 &\color{red}{0.419} &0 &0 &0 &0 &0 &0 &\color{blue}{0.736} &\color{blue}{0.334} &0 &0 &\color{blue}{1.155} &\color{blue}{0.479} &0 &\color{blue}{1.155}\\
-F &0 &\color{red}{0.77} &\color{red}{0.579} &\color{red}{1.21} &\color{red}{0.305} &0 &\color{red}{0.293} &\color{red}{1.158} &\color{red}{1.067} &\color{red}{0.579} &\color{blue}{1.569} &0 &0 &0 &0 &0 &0 &0 &0 &0\\
-G &0 &0 &0 &0 &0 &\color{red}{0.368} &0 &0 &0 &0 &0 &\color{blue}{0.894} &0 &\color{blue}{0.3} &\color{blue}{0.713} &0 &0 &0 &\color{blue}{1.157} &\color{blue}{0.645}\\
-H &\color{red}{0.251} &0 &0 &0 &0 &\color{red}{0.314} &0 &0 &0 &0 &0 &\color{blue}{0.285} &\color{blue}{0.267} &\color{blue}{0.251} &0 &0 &0 &0 &\color{blue}{1.014} &0\\
-I &\color{red}{0.223} &0 &0 &0 &0 &\color{red}{0.279} &0 &0 &0 &0 &0 &\color{blue}{0.254} &\color{blue}{0.237} &\color{blue}{0.223} &0 &0 &0 &\color{blue}{0.599} &0 &0\\
-J &0 &0 &0 &0 &0 &\color{red}{0.368} &0 &0 &0 &0 &0 &\color{blue}{0.46} &\color{blue}{0.645} &\color{blue}{0.3} &\color{blue}{0.309} &0 &\color{blue}{0.645} &\color{blue}{0.584} &\color{blue}{1.157} &0\\
\hline \end{array} $$
基于截距的聚类分析
手性对称矩阵的阈值集合$\ddot \Delta $ 得出对应 19个结构。
序号 | 阈值集合中——特征阈值 | 聚类特征-对应截距$\lambda $数值区段 | ISM运算过程 |
---|---|---|---|
1 | 0.10001 | 0<$\lambda$<0.1 | |
2 | 0.25084 | 0.1<$\lambda$<0.2508 | |
3 | 0.33445 | 0.2508<$\lambda$<0.3345 | |
4 | 0.50263 | 0.3345<$\lambda$<0.5026 | |
5 | 0.58404 | 0.5026<$\lambda$<0.584 | |
6 | 0.64457 | 0.584<$\lambda$<0.6446 | |
7 | 0.7133 | 0.6446<$\lambda$<0.7133 | |
8 | 0.73639 | 0.7133<$\lambda$<0.7364 | |
9 | 0.77 | 0.7364<$\lambda$<0.77 | |
10 | 0.89437 | 0.77<$\lambda$<0.8944 | |
11 | 0.92525 | 0.8944<$\lambda$<0.9252 | |
12 | 1.01366 | 0.9252<$\lambda$<1.0137 | |
13 | 1.06745 | 1.0137<$\lambda$<1.0674 | |
14 | 1.15656 | 1.0674<$\lambda$<1.1566 | |
15 | 1.15847 | 1.1566<$\lambda$<1.1585 | |
16 | 1.49443 | 1.1585<$\lambda$<1.4944 | |
17 | 1.56945 | 1.4944<$\lambda$<1.5694 | |
18 | 1.62186 | 1.5694<$\lambda$<1.6219 | |
19 | 2.69985 | 1.6219<$\lambda$<2.6999 |
取绝对值,不进行平移对称化矩阵如下:
$$ABS-ORI=\begin{array}{c|c|c|c|c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\
\hline A &0 &0.50263 &0.40959 &0.81093 &0.88367 &0.88367 &0.40959 &1.62186 &1.49443 &0.40959\\
\hline B &0.28667 &0 &0.30511 &0.57924 &0.57924 &0.35902 &0.99021 &0.49758 &0 &0.99021\\
\hline C &0 &0.24291 &0 &0.10001 &0.10462 &0 &0 &0 &0 &0.10375\\
\hline D &0.81093 &0.45652 &0.42715 &0 &0.81093 &2.69985 &0.88367 &0.57536 &0.92525 &0.88367\\
\hline E &0.33445 &0 &0.73639 &0.33445 &0 &0.41886 &1.15525 &0.47947 &0 &1.15525\\
\hline F &1.56945 &0.77 &0.57924 &1.21043 &0.30511 &0 &0.29256 &1.15847 &1.06745 &0.57924\\
\hline G &0 &0.89437 &0 &0.30036 &0.7133 &0.36831 &0 &0 &1.15656 &0.64457\\
\hline H &0.25084 &0.28532 &0.26697 &0.25084 &0 &0.31414 &0 &0 &1.01366 &0\\
\hline I &0.22297 &0.25362 &0.2373 &0.22297 &0 &0.27924 &0 &0.59889 &0 &0\\
\hline J &0 &0.46001 &0.64457 &0.30036 &0.30903 &0.36831 &0.64457 &0.58404 &1.15656 &0\\
\hline \end{array} $$
基于截距的聚类分析
手性对称矩阵的阈值集合$\ddot \Delta $ 得出对应 18个结构。
序号 | 阈值集合中——特征阈值 | 聚类特征-对应截距$\lambda $数值区段 | ISM运算过程 |
---|---|---|---|
1 | 0 | 0<$\lambda$<0 | |
2 | 0.25084 | 0<$\lambda$<0.2508 | |
3 | 0.33445 | 0.2508<$\lambda$<0.3345 | |
4 | 0.58404 | 0.3345<$\lambda$<0.584 | |
5 | 0.64457 | 0.584<$\lambda$<0.6446 | |
6 | 0.7133 | 0.6446<$\lambda$<0.7133 | |
7 | 0.73639 | 0.7133<$\lambda$<0.7364 | |
8 | 0.77 | 0.7364<$\lambda$<0.77 | |
9 | 0.89437 | 0.77<$\lambda$<0.8944 | |
10 | 0.92525 | 0.8944<$\lambda$<0.9252 | |
11 | 1.01366 | 0.9252<$\lambda$<1.0137 | |
12 | 1.06745 | 1.0137<$\lambda$<1.0674 | |
13 | 1.15656 | 1.0674<$\lambda$<1.1566 | |
14 | 1.15847 | 1.1566<$\lambda$<1.1585 | |
15 | 1.49443 | 1.1585<$\lambda$<1.4944 | |
16 | 1.56945 | 1.4944<$\lambda$<1.5694 | |
17 | 1.62186 | 1.5694<$\lambda$<1.6219 | |
18 | 2.69985 | 1.6219<$\lambda$<2.6999 |