原始数据

$$ \begin{array}{c|c|c|c|c|c|c}{M_{17 \times17}} &IC1 &IC2 &IC3 &IC4 &IC5 &IC6 &IC7 &PE1 &PE2 &PE3 &PE4 &PE5 &PE6 &PE7 &RE1 &RE2 &RE3\\ \hline IC1 &0 &0.01 &-0.32 &-0.08 &-0.13 &-0.17 &-0.21 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline IC2 &0.43 &0 &-0.28 &0.01 &-0.19 &-0.2 &-0.2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline IC3 &-0.22 &-0.24 &0 &-0.19 &-0.27 &-0.25 &-0.41 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline IC4 &-0.2 &-0.21 &0.07 &0 &-0.24 &-0.47 &-0.38 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline IC5 &0.15 &0.09 &0.33 &0.22 &0 &1.23 &0.09 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline IC6 &0.01 &-0.04 &0.12 &0.6 &0.1 &0 &-0.68 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline IC7 &0.55 &0.59 &0.64 &0.47 &0.61 &0.73 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline PE1 &1.32 &1.28 &0.29 &0.08 &-0.15 &-0.13 &0.01 &0 &-0.26 &0.32 &-0.1 &0.21 &0.45 &0.37 &0 &0 &0\\ \hline PE2 &-0.2 &-0.34 &-0.18 &-0.11 &-1.85 &-0.42 &-0.88 &-0.27 &0 &-0.19 &-1.59 &-0.29 &-0.23 &-0.21 &0 &0 &0\\ \hline PE3 &-0.21 &-0.2 &-0.07 &-0.1 &-0.21 &-0.49 &-0.27 &-0.21 &0.37 &0 &-0.17 &-0.24 &-0.16 &-0.1 &0 &0 &0\\ \hline PE4 &-0.17 &-0.15 &1.11 &0.29 &0.24 &0.84 &-0.05 &-0.15 &2.3 &0.21 &0 &-0.12 &0.16 &-0.2 &0 &0 &0\\ \hline PE5 &0.33 &0.25 &0.59 &0.43 &0.14 &2.35 &0.7 &-0.11 &0.53 &0.35 &0.19 &0 &0.25 &-0.13 &0 &0 &0\\ \hline PE6 &-0.23 &-0.21 &1.06 &0.36 &-0.04 &0.05 &-0.18 &-1.22 &0.67 &0.15 &0.09 &-0.81 &0 &-0.14 &0 &0 &0\\ \hline PE7 &2.19 &1.42 &0.15 &1.02 &0.2 &-0.15 &-0.01 &0.95 &0.75 &-0.02 &-0.05 &0.4 &-0.03 &0 &0 &0 &0\\ \hline RE1 &-0.12 &-0.18 &0.02 &-0.42 &-1.03 &-1.56 &-1.11 &-0.21 &0.02 &-0.25 &-0.34 &-0.72 &-0.25 &-0.28 &0 &0 &0\\ \hline RE2 &4.02 &2.51 &-0.09 &0.14 &0.04 &-0.12 &0.04 &1.95 &-0.07 &0.35 &-0.09 &0.02 &-0.05 &1.39 &0 &0 &0\\ \hline RE3 &0.93 &2.42 &0 &-0.09 &-0.04 &-0.16 &-0.14 &0.3 &-0.19 &0.18 &-0.08 &-0.13 &0.32 &0.03 &0 &0 &0\\ \hline \end{array} $$

主对角线记作0

截距选取并获得手性矩阵

输入截距λ
请输入截距值,该值为正整数。
由于定义的原因请务必选择原始矩阵是否需要转置

未取截距前手性对称矩阵如下

$$Ori=\begin{array}{c|c|c|c|c|c|c}{M_{17 \times17}} &IC1 &IC2 &IC3 &IC4 &IC5 &IC6 &IC7 &PE1 &PE2 &PE3 &PE4 &PE5 &PE6 &PE7 &RE1 &RE2 &RE3\\ \hline IC1 &0.00 &0.43 &-0.22 &-0.20 &0.15 &0.01 &0.55 &1.32 &-0.20 &-0.21 &-0.17 &0.33 &-0.23 &2.19 &-0.12 &4.02 &0.93 \\ \hline IC2 &0.01 &0.00 &-0.24 &-0.21 &0.09 &-0.04 &0.59 &1.28 &-0.34 &-0.20 &-0.15 &0.25 &-0.21 &1.42 &-0.18 &2.51 &2.42 \\ \hline IC3 &-0.32 &-0.28 &0.00 &0.07 &0.33 &0.12 &0.64 &0.29 &-0.18 &-0.07 &1.11 &0.59 &1.06 &0.15 &0.02 &-0.09 &0.00 \\ \hline IC4 &-0.08 &0.01 &-0.19 &0.00 &0.22 &0.60 &0.47 &0.08 &-0.11 &-0.10 &0.29 &0.43 &0.36 &1.02 &-0.42 &0.14 &-0.09 \\ \hline IC5 &-0.13 &-0.19 &-0.27 &-0.24 &0.00 &0.10 &0.61 &-0.15 &-1.85 &-0.21 &0.24 &0.14 &-0.04 &0.20 &-1.03 &0.04 &-0.04 \\ \hline IC6 &-0.17 &-0.20 &-0.25 &-0.47 &1.23 &0.00 &0.73 &-0.13 &-0.42 &-0.49 &0.84 &2.35 &0.05 &-0.15 &-1.56 &-0.12 &-0.16 \\ \hline IC7 &-0.21 &-0.20 &-0.41 &-0.38 &0.09 &-0.68 &0.00 &0.01 &-0.88 &-0.27 &-0.05 &0.70 &-0.18 &-0.01 &-1.11 &0.04 &-0.14 \\ \hline PE1 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &-0.27 &-0.21 &-0.15 &-0.11 &-1.22 &0.95 &-0.21 &1.95 &0.30 \\ \hline PE2 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &-0.26 &0.00 &0.37 &2.30 &0.53 &0.67 &0.75 &0.02 &-0.07 &-0.19 \\ \hline PE3 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.32 &-0.19 &0.00 &0.21 &0.35 &0.15 &-0.02 &-0.25 &0.35 &0.18 \\ \hline PE4 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &-0.10 &-1.59 &-0.17 &0.00 &0.19 &0.09 &-0.05 &-0.34 &-0.09 &-0.08 \\ \hline PE5 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.21 &-0.29 &-0.24 &-0.12 &0.00 &-0.81 &0.40 &-0.72 &0.02 &-0.13 \\ \hline PE6 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.45 &-0.23 &-0.16 &0.16 &0.25 &0.00 &-0.03 &-0.25 &-0.05 &0.32 \\ \hline PE7 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.37 &-0.21 &-0.10 &-0.20 &-0.13 &-0.14 &0.00 &-0.28 &1.39 &0.03 \\ \hline RE1 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 \\ \hline RE2 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 \\ \hline RE3 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0.00 &0\\ \hline \end{array} $$
镜像平移后的矩阵如下
$$\begin{array} {c|ccccccccccccccccc|ccccccccccccccccc}{M_{34 \times34}} &+IC1 &+IC2 &+IC3 &+IC4 &+IC5 &+IC6 &+IC7 &+PE1 &+PE2 &+PE3 &+PE4 &+PE5 &+PE6 &+PE7 &+RE1 &+RE2 &+RE3 &-IC1 &-IC2 &-IC3 &-IC4 &-IC5 &-IC6 &-IC7 &-PE1 &-PE2 &-PE3 &-PE4 &-PE5 &-PE6 &-PE7 &-RE1 &-RE2 &-RE3\\ \hline +IC1 &0 &\color{blue}{0.43} &0 &0 &\color{blue}{0.15} &\color{blue}{0.01} &\color{blue}{0.55} &\color{blue}{1.32} &0 &0 &0 &\color{blue}{0.33} &0 &\color{blue}{2.19} &0 &\color{blue}{4.02} &\color{blue}{0.93} &0 &0 &\color{red}{0.22} &\color{red}{0.2} &0 &0 &0 &0 &\color{red}{0.2} &\color{red}{0.21} &\color{red}{0.17} &0 &\color{red}{0.23} &0 &\color{red}{0.12} &0 &0\\ +IC2 &\color{blue}{0.01} &0 &0 &0 &\color{blue}{0.09} &0 &\color{blue}{0.59} &\color{blue}{1.28} &0 &0 &0 &\color{blue}{0.25} &0 &\color{blue}{1.42} &0 &\color{blue}{2.51} &\color{blue}{2.42} &0 &0 &\color{red}{0.24} &\color{red}{0.21} &0 &\color{red}{0.04} &0 &0 &\color{red}{0.34} &\color{red}{0.2} &\color{red}{0.15} &0 &\color{red}{0.21} &0 &\color{red}{0.18} &0 &0\\ +IC3 &0 &0 &0 &\color{blue}{0.07} &\color{blue}{0.33} &\color{blue}{0.12} &\color{blue}{0.64} &\color{blue}{0.29} &0 &0 &\color{blue}{1.11} &\color{blue}{0.59} &\color{blue}{1.06} &\color{blue}{0.15} &\color{blue}{0.02} &0 &0 &\color{red}{0.32} &\color{red}{0.28} &0 &0 &0 &0 &0 &0 &\color{red}{0.18} &\color{red}{0.07} &0 &0 &0 &0 &0 &\color{red}{0.09} &0\\ +IC4 &0 &\color{blue}{0.01} &0 &0 &\color{blue}{0.22} &\color{blue}{0.6} &\color{blue}{0.47} &\color{blue}{0.08} &0 &0 &\color{blue}{0.29} &\color{blue}{0.43} &\color{blue}{0.36} &\color{blue}{1.02} &0 &\color{blue}{0.14} &0 &\color{red}{0.08} &0 &\color{red}{0.19} &0 &0 &0 &0 &0 &\color{red}{0.11} &\color{red}{0.1} &0 &0 &0 &0 &\color{red}{0.42} &0 &\color{red}{0.09}\\ +IC5 &0 &0 &0 &0 &0 &\color{blue}{0.1} &\color{blue}{0.61} &0 &0 &0 &\color{blue}{0.24} &\color{blue}{0.14} &0 &\color{blue}{0.2} &0 &\color{blue}{0.04} &0 &\color{red}{0.13} &\color{red}{0.19} &\color{red}{0.27} &\color{red}{0.24} &0 &0 &0 &\color{red}{0.15} &\color{red}{1.85} &\color{red}{0.21} &0 &0 &\color{red}{0.04} &0 &\color{red}{1.03} &0 &\color{red}{0.04}\\ +IC6 &0 &0 &0 &0 &\color{blue}{1.23} &0 &\color{blue}{0.73} &0 &0 &0 &\color{blue}{0.84} &\color{blue}{2.35} &\color{blue}{0.05} &0 &0 &0 &0 &\color{red}{0.17} &\color{red}{0.2} &\color{red}{0.25} &\color{red}{0.47} &0 &0 &0 &\color{red}{0.13} &\color{red}{0.42} &\color{red}{0.49} &0 &0 &0 &\color{red}{0.15} &\color{red}{1.56} &\color{red}{0.12} &\color{red}{0.16}\\ +IC7 &0 &0 &0 &0 &\color{blue}{0.09} &0 &0 &\color{blue}{0.01} &0 &0 &0 &\color{blue}{0.7} &0 &0 &0 &\color{blue}{0.04} &0 &\color{red}{0.21} &\color{red}{0.2} &\color{red}{0.41} &\color{red}{0.38} &0 &\color{red}{0.68} &0 &0 &\color{red}{0.88} &\color{red}{0.27} &\color{red}{0.05} &0 &\color{red}{0.18} &\color{red}{0.01} &\color{red}{1.11} &0 &\color{red}{0.14}\\ +PE1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.95} &0 &\color{blue}{1.95} &\color{blue}{0.3} &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.27} &\color{red}{0.21} &\color{red}{0.15} &\color{red}{0.11} &\color{red}{1.22} &0 &\color{red}{0.21} &0 &0\\ +PE2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.37} &\color{blue}{2.3} &\color{blue}{0.53} &\color{blue}{0.67} &\color{blue}{0.75} &\color{blue}{0.02} &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.26} &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.07} &\color{red}{0.19}\\ +PE3 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.32} &0 &0 &\color{blue}{0.21} &\color{blue}{0.35} &\color{blue}{0.15} &0 &0 &\color{blue}{0.35} &\color{blue}{0.18} &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.19} &0 &0 &0 &0 &\color{red}{0.02} &\color{red}{0.25} &0 &0\\ +PE4 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.19} &\color{blue}{0.09} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.1} &\color{red}{1.59} &\color{red}{0.17} &0 &0 &0 &\color{red}{0.05} &\color{red}{0.34} &\color{red}{0.09} &\color{red}{0.08}\\ +PE5 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.21} &0 &0 &0 &0 &0 &\color{blue}{0.4} &0 &\color{blue}{0.02} &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.29} &\color{red}{0.24} &\color{red}{0.12} &0 &\color{red}{0.81} &0 &\color{red}{0.72} &0 &\color{red}{0.13}\\ +PE6 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.45} &0 &0 &\color{blue}{0.16} &\color{blue}{0.25} &0 &0 &0 &0 &\color{blue}{0.32} &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.23} &\color{red}{0.16} &0 &0 &0 &\color{red}{0.03} &\color{red}{0.25} &\color{red}{0.05} &0\\ +PE7 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.37} &0 &0 &0 &0 &0 &0 &0 &\color{blue}{1.39} &\color{blue}{0.03} &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.21} &\color{red}{0.1} &\color{red}{0.2} &\color{red}{0.13} &\color{red}{0.14} &0 &\color{red}{0.28} &0 &0\\ +RE1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +RE2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ +RE3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline -IC1 &0 &0 &\color{red}{0.22} &\color{red}{0.2} &0 &0 &0 &0 &\color{red}{0.2} &\color{red}{0.21} &\color{red}{0.17} &0 &\color{red}{0.23} &0 &\color{red}{0.12} &0 &0 &0 &\color{blue}{0.43} &0 &0 &\color{blue}{0.15} &\color{blue}{0.01} &\color{blue}{0.55} &\color{blue}{1.32} &0 &0 &0 &\color{blue}{0.33} &0 &\color{blue}{2.19} &0 &\color{blue}{4.02} &\color{blue}{0.93}\\ -IC2 &0 &0 &\color{red}{0.24} &\color{red}{0.21} &0 &\color{red}{0.04} &0 &0 &\color{red}{0.34} &\color{red}{0.2} &\color{red}{0.15} &0 &\color{red}{0.21} &0 &\color{red}{0.18} &0 &0 &\color{blue}{0.01} &0 &0 &0 &\color{blue}{0.09} &0 &\color{blue}{0.59} &\color{blue}{1.28} &0 &0 &0 &\color{blue}{0.25} &0 &\color{blue}{1.42} &0 &\color{blue}{2.51} &\color{blue}{2.42}\\ -IC3 &\color{red}{0.32} &\color{red}{0.28} &0 &0 &0 &0 &0 &0 &\color{red}{0.18} &\color{red}{0.07} &0 &0 &0 &0 &0 &\color{red}{0.09} &0 &0 &0 &0 &\color{blue}{0.07} &\color{blue}{0.33} &\color{blue}{0.12} &\color{blue}{0.64} &\color{blue}{0.29} &0 &0 &\color{blue}{1.11} &\color{blue}{0.59} &\color{blue}{1.06} &\color{blue}{0.15} &\color{blue}{0.02} &0 &0\\ -IC4 &\color{red}{0.08} &0 &\color{red}{0.19} &0 &0 &0 &0 &0 &\color{red}{0.11} &\color{red}{0.1} &0 &0 &0 &0 &\color{red}{0.42} &0 &\color{red}{0.09} &0 &\color{blue}{0.01} &0 &0 &\color{blue}{0.22} &\color{blue}{0.6} &\color{blue}{0.47} &\color{blue}{0.08} &0 &0 &\color{blue}{0.29} &\color{blue}{0.43} &\color{blue}{0.36} &\color{blue}{1.02} &0 &\color{blue}{0.14} &0\\ -IC5 &\color{red}{0.13} &\color{red}{0.19} &\color{red}{0.27} &\color{red}{0.24} &0 &0 &0 &\color{red}{0.15} &\color{red}{1.85} &\color{red}{0.21} &0 &0 &\color{red}{0.04} &0 &\color{red}{1.03} &0 &\color{red}{0.04} &0 &0 &0 &0 &0 &\color{blue}{0.1} &\color{blue}{0.61} &0 &0 &0 &\color{blue}{0.24} &\color{blue}{0.14} &0 &\color{blue}{0.2} &0 &\color{blue}{0.04} &0\\ -IC6 &\color{red}{0.17} &\color{red}{0.2} &\color{red}{0.25} &\color{red}{0.47} &0 &0 &0 &\color{red}{0.13} &\color{red}{0.42} &\color{red}{0.49} &0 &0 &0 &\color{red}{0.15} &\color{red}{1.56} &\color{red}{0.12} &\color{red}{0.16} &0 &0 &0 &0 &\color{blue}{1.23} &0 &\color{blue}{0.73} &0 &0 &0 &\color{blue}{0.84} &\color{blue}{2.35} &\color{blue}{0.05} &0 &0 &0 &0\\ -IC7 &\color{red}{0.21} &\color{red}{0.2} &\color{red}{0.41} &\color{red}{0.38} &0 &\color{red}{0.68} &0 &0 &\color{red}{0.88} &\color{red}{0.27} &\color{red}{0.05} &0 &\color{red}{0.18} &\color{red}{0.01} &\color{red}{1.11} &0 &\color{red}{0.14} &0 &0 &0 &0 &\color{blue}{0.09} &0 &0 &\color{blue}{0.01} &0 &0 &0 &\color{blue}{0.7} &0 &0 &0 &\color{blue}{0.04} &0\\ -PE1 &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.27} &\color{red}{0.21} &\color{red}{0.15} &\color{red}{0.11} &\color{red}{1.22} &0 &\color{red}{0.21} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.95} &0 &\color{blue}{1.95} &\color{blue}{0.3}\\ -PE2 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.26} &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.07} &\color{red}{0.19} &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.37} &\color{blue}{2.3} &\color{blue}{0.53} &\color{blue}{0.67} &\color{blue}{0.75} &\color{blue}{0.02} &0 &0\\ -PE3 &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.19} &0 &0 &0 &0 &\color{red}{0.02} &\color{red}{0.25} &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.32} &0 &0 &\color{blue}{0.21} &\color{blue}{0.35} &\color{blue}{0.15} &0 &0 &\color{blue}{0.35} &\color{blue}{0.18}\\ -PE4 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.1} &\color{red}{1.59} &\color{red}{0.17} &0 &0 &0 &\color{red}{0.05} &\color{red}{0.34} &\color{red}{0.09} &\color{red}{0.08} &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.19} &\color{blue}{0.09} &0 &0 &0 &0\\ -PE5 &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.29} &\color{red}{0.24} &\color{red}{0.12} &0 &\color{red}{0.81} &0 &\color{red}{0.72} &0 &\color{red}{0.13} &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.21} &0 &0 &0 &0 &0 &\color{blue}{0.4} &0 &\color{blue}{0.02} &0\\ -PE6 &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.23} &\color{red}{0.16} &0 &0 &0 &\color{red}{0.03} &\color{red}{0.25} &\color{red}{0.05} &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.45} &0 &0 &\color{blue}{0.16} &\color{blue}{0.25} &0 &0 &0 &0 &\color{blue}{0.32}\\ -PE7 &0 &0 &0 &0 &0 &0 &0 &0 &\color{red}{0.21} &\color{red}{0.1} &\color{red}{0.2} &\color{red}{0.13} &\color{red}{0.14} &0 &\color{red}{0.28} &0 &0 &0 &0 &0 &0 &0 &0 &0 &\color{blue}{0.37} &0 &0 &0 &0 &0 &0 &0 &\color{blue}{1.39} &\color{blue}{0.03}\\ -RE1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ -RE2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ -RE3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline \end{array} $$

取截距后对称矩阵如下

截距为:0.8$$对称矩阵hand=\begin{vmatrix}0&0&0&0&0&0&0&1&0&0&0&0&0&1&0&1&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&1&0&0&0&0&0&1&0&1&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&1&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&1&0&0\\ 0&0&0&0&1&0&0&0&0&0&1&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&1&0&1&1\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&1&0&1&1\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&1&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&1&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&1&0&0&0&0&0&1&1&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&1&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&1&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\\end{vmatrix} $$

获得最大连通域

$$最大连通域矩阵=\begin{array} {c|c|c|c|c|c|c|c}{M_{32 \times32}} &+IC1 &+IC2 &+IC3 &+IC4 &+IC5 &+IC6 &+IC7 &+PE1 &+PE2 &+PE4 &+PE5 &+PE6 &+PE7 &+RE1 &+RE2 &+RE3 &-IC1 &-IC2 &-IC3 &-IC4 &-IC5 &-IC6 &-IC7 &-PE1 &-PE2 &-PE4 &-PE5 &-PE6 &-PE7 &-RE1 &-RE2 &-RE3\\ \hline +IC1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &1 &0 &1 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline +IC2 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &1 &0 &1 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline +IC3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline +IC4 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline +IC5 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &1 &0 &0\\ \hline +IC6 &0 &0 &0 &0 &1 &0 &0 &0 &0 &1 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline +IC7 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &1 &0 &0\\ \hline +PE1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline +PE2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline +PE4 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline +PE5 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline +PE6 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline +PE7 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline +RE1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline +RE2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline +RE3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline -IC1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &1 &0 &1 &1\\ \hline -IC2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &1 &0 &1 &1\\ \hline -IC3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &1 &0 &0 &0 &0\\ \hline -IC4 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline -IC5 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline -IC6 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &1 &1 &0 &0 &0 &0 &0\\ \hline -IC7 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline -PE1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &1 &0\\ \hline -PE2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline -PE4 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline -PE5 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline -PE6 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline -PE7 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline -RE1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline -RE2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline -RE3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline \end{array} $$

求解最大连通域的对抗层级拓扑图

由最大连通域矩阵出发,求解其可达矩阵

相乘矩阵$ B= A+I$

$$B=\begin{array} {c|c|c|c|c|c|c|c}{M_{32 \times32}} &+IC1 &+IC2 &+IC3 &+IC4 &+IC5 &+IC6 &+IC7 &+PE1 &+PE2 &+PE4 &+PE5 &+PE6 &+PE7 &+RE1 &+RE2 &+RE3 &-IC1 &-IC2 &-IC3 &-IC4 &-IC5 &-IC6 &-IC7 &-PE1 &-PE2 &-PE4 &-PE5 &-PE6 &-PE7 &-RE1 &-RE2 &-RE3\\ \hline +IC1 &1 & & & & & & &1 & & & & &1 & &1 &1 & & & & & & & & & & & & & & & & \\ \hline +IC2 & &1 & & & & & &1 & & & & &1 & &1 &1 & & & & & & & & & & & & & & & & \\ \hline +IC3 & & &1 & & & & & & &1 & &1 & & & & & & & & & & & & & & & & & & & & \\ \hline +IC4 & & & &1 & & & & & & & & &1 & & & & & & & & & & & & & & & & & & & \\ \hline +IC5 & & & & &1 & & & & & & & & & & & & & & & & & & & &1 & & & & &1 & & \\ \hline +IC6 & & & & &1 &1 & & & &1 &1 & & & & & & & & & & & & & & & & & & &1 & & \\ \hline +IC7 & & & & & & &1 & & & & & & & & & & & & & & & & & &1 & & & & &1 & & \\ \hline +PE1 & & & & & & & &1 & & & & &1 & &1 & & & & & & & & & & & & &1 & & & & \\ \hline +PE2 & & & & & & & & &1 &1 & & & & & & & & & & & & & & & & & & & & & & \\ \hline +PE4 & & & & & & & & & &1 & & & & & & & & & & & & & & &1 & & & & & & & \\ \hline +PE5 & & & & & & & & & & &1 & & & & & & & & & & & & & & & & &1 & & & & \\ \hline +PE6 & & & & & & & & & & & &1 & & & & & & & & & & & & & & & & & & & & \\ \hline +PE7 & & & & & & & & & & & & &1 & &1 & & & & & & & & & & & & & & & & & \\ \hline +RE1 & & & & & & & & & & & & & &1 & & & & & & & & & & & & & & & & & & \\ \hline +RE2 & & & & & & & & & & & & & & &1 & & & & & & & & & & & & & & & & & \\ \hline +RE3 & & & & & & & & & & & & & & & &1 & & & & & & & & & & & & & & & & \\ \hline -IC1 & & & & & & & & & & & & & & & & &1 & & & & & & &1 & & & & &1 & &1 &1\\ \hline -IC2 & & & & & & & & & & & & & & & & & &1 & & & & & &1 & & & & &1 & &1 &1\\ \hline -IC3 & & & & & & & & & & & & & & & & & & &1 & & & & & & &1 & &1 & & & & \\ \hline -IC4 & & & & & & & & & & & & & & & & & & & &1 & & & & & & & & &1 & & & \\ \hline -IC5 & & & & & & & & &1 & & & & &1 & & & & & & &1 & & & & & & & & & & & \\ \hline -IC6 & & & & & & & & & & & & & &1 & & & & & & &1 &1 & & & &1 &1 & & & & & \\ \hline -IC7 & & & & & & & & &1 & & & & &1 & & & & & & & & &1 & & & & & & & & & \\ \hline -PE1 & & & & & & & & & & & &1 & & & & & & & & & & & &1 & & & & &1 & &1 & \\ \hline -PE2 & & & & & & & & & & & & & & & & & & & & & & & & &1 &1 & & & & & & \\ \hline -PE4 & & & & & & & & &1 & & & & & & & & & & & & & & & & &1 & & & & & & \\ \hline -PE5 & & & & & & & & & & & &1 & & & & & & & & & & & & & & &1 & & & & & \\ \hline -PE6 & & & & & & & & & & & & & & & & & & & & & & & & & & & &1 & & & & \\ \hline -PE7 & & & & & & & & & & & & & & & & & & & & & & & & & & & & &1 & &1 & \\ \hline -RE1 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & &1 & & \\ \hline -RE2 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & &1 & \\ \hline -RE3 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & &1\\ \hline \end{array} $$

可达矩阵$ \tilde R$ 由相乘矩阵一直乘下去直到不变。

$$R=\begin{array} {c|c|c|c|c|c|c|c}{M_{32 \times32}} &+IC1 &+IC2 &+IC3 &+IC4 &+IC5 &+IC6 &+IC7 &+PE1 &+PE2 &+PE4 &+PE5 &+PE6 &+PE7 &+RE1 &+RE2 &+RE3 &-IC1 &-IC2 &-IC3 &-IC4 &-IC5 &-IC6 &-IC7 &-PE1 &-PE2 &-PE4 &-PE5 &-PE6 &-PE7 &-RE1 &-RE2 &-RE3\\ \hline +IC1 &1 & & & & & & &1 & & & & &1 & &1 &1 & & & & & & & & & & & &1 & & & & \\ \hline +IC2 & &1 & & & & & &1 & & & & &1 & &1 &1 & & & & & & & & & & & &1 & & & & \\ \hline +IC3 & & &1 & & & & & &1 &1 & &1 & & & & & & & & & & & & &1 &1 & & & & & & \\ \hline +IC4 & & & &1 & & & & & & & & &1 & &1 & & & & & & & & & & & & & & & & & \\ \hline +IC5 & & & & &1 & & & &1 &1 & & & & & & & & & & & & & & &1 &1 & & & &1 & & \\ \hline +IC6 & & & & &1 &1 & & &1 &1 &1 & & & & & & & & & & & & & &1 &1 & &1 & &1 & & \\ \hline +IC7 & & & & & & &1 & &1 &1 & & & & & & & & & & & & & & &1 &1 & & & &1 & & \\ \hline +PE1 & & & & & & & &1 & & & & &1 & &1 & & & & & & & & & & & & &1 & & & & \\ \hline +PE2 & & & & & & & & &1 &1 & & & & & & & & & & & & & & &1 &1 & & & & & & \\ \hline +PE4 & & & & & & & & &1 &1 & & & & & & & & & & & & & & &1 &1 & & & & & & \\ \hline +PE5 & & & & & & & & & & &1 & & & & & & & & & & & & & & & & &1 & & & & \\ \hline +PE6 & & & & & & & & & & & &1 & & & & & & & & & & & & & & & & & & & & \\ \hline +PE7 & & & & & & & & & & & & &1 & &1 & & & & & & & & & & & & & & & & & \\ \hline +RE1 & & & & & & & & & & & & & &1 & & & & & & & & & & & & & & & & & & \\ \hline +RE2 & & & & & & & & & & & & & & &1 & & & & & & & & & & & & & & & & & \\ \hline +RE3 & & & & & & & & & & & & & & & &1 & & & & & & & & & & & & & & & & \\ \hline -IC1 & & & & & & & & & & & &1 & & & & &1 & & & & & & &1 & & & & &1 & &1 &1\\ \hline -IC2 & & & & & & & & & & & &1 & & & & & &1 & & & & & &1 & & & & &1 & &1 &1\\ \hline -IC3 & & & & & & & & &1 &1 & & & & & & & & &1 & & & & & &1 &1 & &1 & & & & \\ \hline -IC4 & & & & & & & & & & & & & & & & & & & &1 & & & & & & & & &1 & &1 & \\ \hline -IC5 & & & & & & & & &1 &1 & & & &1 & & & & & & &1 & & & &1 &1 & & & & & & \\ \hline -IC6 & & & & & & & & &1 &1 & &1 & &1 & & & & & & &1 &1 & & &1 &1 &1 & & & & & \\ \hline -IC7 & & & & & & & & &1 &1 & & & &1 & & & & & & & & &1 & &1 &1 & & & & & & \\ \hline -PE1 & & & & & & & & & & & &1 & & & & & & & & & & & &1 & & & & &1 & &1 & \\ \hline -PE2 & & & & & & & & &1 &1 & & & & & & & & & & & & & & &1 &1 & & & & & & \\ \hline -PE4 & & & & & & & & &1 &1 & & & & & & & & & & & & & & &1 &1 & & & & & & \\ \hline -PE5 & & & & & & & & & & & &1 & & & & & & & & & & & & & & &1 & & & & & \\ \hline -PE6 & & & & & & & & & & & & & & & & & & & & & & & & & & & &1 & & & & \\ \hline -PE7 & & & & & & & & & & & & & & & & & & & & & & & & & & & & &1 & &1 & \\ \hline -RE1 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & &1 & & \\ \hline -RE2 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & &1 & \\ \hline -RE3 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & &1\\ \hline \end{array} $$

对抗的层级抽取过程

两种层级抽取规则:

抽取的过程如下


结果优先——UP型抽取过程 原因优先——DOWN型抽取过程
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline +IC1&+IC1,+PE1,+PE7,+RE2,+RE3,-PE6&+IC1 \\\hline +IC2&+IC2,+PE1,+PE7,+RE2,+RE3,-PE6&+IC2 \\\hline +IC3&+IC3,+PE2,+PE4,+PE6,-PE2,-PE4&+IC3 \\\hline +IC4&+IC4,+PE7,+RE2&+IC4 \\\hline +IC5&+IC5,+PE2,+PE4,-PE2,-PE4,-RE1&+IC5 \\\hline +IC6&+IC5,+IC6,+PE2,+PE4,+PE5,-PE2,-PE4,-PE6,-RE1&+IC6 \\\hline +IC7&+IC7,+PE2,+PE4,-PE2,-PE4,-RE1&+IC7 \\\hline +PE1&+PE1,+PE7,+RE2,-PE6&+PE1 \\\hline +PE2&\color{red}{\fbox{+PE2,+PE4,-PE2,-PE4}}&\color{red}{\fbox{+PE2,+PE4,-PE2,-PE4}} \\\hline +PE4&\color{red}{\fbox{+PE2,+PE4,-PE2,-PE4}}&\color{red}{\fbox{+PE2,+PE4,-PE2,-PE4}} \\\hline +PE5&+PE5,-PE6&+PE5 \\\hline +PE6&\color{red}{\fbox{+PE6}}&\color{red}{\fbox{+PE6}} \\\hline +PE7&+PE7,+RE2&+PE7 \\\hline +RE1&\color{red}{\fbox{+RE1}}&\color{red}{\fbox{+RE1}} \\\hline +RE2&\color{red}{\fbox{+RE2}}&\color{red}{\fbox{+RE2}} \\\hline +RE3&\color{red}{\fbox{+RE3}}&\color{red}{\fbox{+RE3}} \\\hline -IC1&+PE6,-IC1,-PE1,-PE7,-RE2,-RE3&-IC1 \\\hline -IC2&+PE6,-IC2,-PE1,-PE7,-RE2,-RE3&-IC2 \\\hline -IC3&+PE2,+PE4,-IC3,-PE2,-PE4,-PE6&-IC3 \\\hline -IC4&-IC4,-PE7,-RE2&-IC4 \\\hline -IC5&+PE2,+PE4,+RE1,-IC5,-PE2,-PE4&-IC5 \\\hline -IC6&+PE2,+PE4,+PE6,+RE1,-IC5,-IC6,-PE2,-PE4,-PE5&-IC6 \\\hline -IC7&+PE2,+PE4,+RE1,-IC7,-PE2,-PE4&-IC7 \\\hline -PE1&+PE6,-PE1,-PE7,-RE2&-PE1 \\\hline -PE2&\color{red}{\fbox{+PE2,+PE4,-PE2,-PE4}}&\color{red}{\fbox{+PE2,+PE4,-PE2,-PE4}} \\\hline -PE4&\color{red}{\fbox{+PE2,+PE4,-PE2,-PE4}}&\color{red}{\fbox{+PE2,+PE4,-PE2,-PE4}} \\\hline -PE5&+PE6,-PE5&-PE5 \\\hline -PE6&\color{red}{\fbox{-PE6}}&\color{red}{\fbox{-PE6}} \\\hline -PE7&-PE7,-RE2&-PE7 \\\hline -RE1&\color{red}{\fbox{-RE1}}&\color{red}{\fbox{-RE1}} \\\hline -RE2&\color{red}{\fbox{-RE2}}&\color{red}{\fbox{-RE2}} \\\hline -RE3&\color{red}{\fbox{-RE3}}&\color{red}{\fbox{-RE3}} \\\hline \end{array} $$ $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline +IC1&\color{blue}{\fbox{+IC1}}&\color{blue}{\fbox{+IC1}} \\\hline +IC2&\color{blue}{\fbox{+IC2}}&\color{blue}{\fbox{+IC2}} \\\hline +IC3&\color{blue}{\fbox{+IC3}}&\color{blue}{\fbox{+IC3}} \\\hline +IC4&\color{blue}{\fbox{+IC4}}&\color{blue}{\fbox{+IC4}} \\\hline +IC5&+IC5,+IC6&+IC5 \\\hline +IC6&\color{blue}{\fbox{+IC6}}&\color{blue}{\fbox{+IC6}} \\\hline +IC7&\color{blue}{\fbox{+IC7}}&\color{blue}{\fbox{+IC7}} \\\hline +PE1&+IC1,+IC2,+PE1&+PE1 \\\hline +PE2&+IC3,+IC5,+IC6,+IC7,+PE2,+PE4,-IC3,-IC5,-IC6,-IC7,-PE2,-PE4&+PE2,+PE4,-PE2,-PE4 \\\hline +PE4&+IC3,+IC5,+IC6,+IC7,+PE2,+PE4,-IC3,-IC5,-IC6,-IC7,-PE2,-PE4&+PE2,+PE4,-PE2,-PE4 \\\hline +PE5&+IC6,+PE5&+PE5 \\\hline +PE6&+IC3,+PE6,-IC1,-IC2,-IC6,-PE1,-PE5&+PE6 \\\hline +PE7&+IC1,+IC2,+IC4,+PE1,+PE7&+PE7 \\\hline +RE1&+RE1,-IC5,-IC6,-IC7&+RE1 \\\hline +RE2&+IC1,+IC2,+IC4,+PE1,+PE7,+RE2&+RE2 \\\hline +RE3&+IC1,+IC2,+RE3&+RE3 \\\hline -IC1&\color{blue}{\fbox{-IC1}}&\color{blue}{\fbox{-IC1}} \\\hline -IC2&\color{blue}{\fbox{-IC2}}&\color{blue}{\fbox{-IC2}} \\\hline -IC3&\color{blue}{\fbox{-IC3}}&\color{blue}{\fbox{-IC3}} \\\hline -IC4&\color{blue}{\fbox{-IC4}}&\color{blue}{\fbox{-IC4}} \\\hline -IC5&-IC5,-IC6&-IC5 \\\hline -IC6&\color{blue}{\fbox{-IC6}}&\color{blue}{\fbox{-IC6}} \\\hline -IC7&\color{blue}{\fbox{-IC7}}&\color{blue}{\fbox{-IC7}} \\\hline -PE1&-IC1,-IC2,-PE1&-PE1 \\\hline -PE2&+IC3,+IC5,+IC6,+IC7,+PE2,+PE4,-IC3,-IC5,-IC6,-IC7,-PE2,-PE4&+PE2,+PE4,-PE2,-PE4 \\\hline -PE4&+IC3,+IC5,+IC6,+IC7,+PE2,+PE4,-IC3,-IC5,-IC6,-IC7,-PE2,-PE4&+PE2,+PE4,-PE2,-PE4 \\\hline -PE5&-IC6,-PE5&-PE5 \\\hline -PE6&+IC1,+IC2,+IC6,+PE1,+PE5,-IC3,-PE6&-PE6 \\\hline -PE7&-IC1,-IC2,-IC4,-PE1,-PE7&-PE7 \\\hline -RE1&+IC5,+IC6,+IC7,-RE1&-RE1 \\\hline -RE2&-IC1,-IC2,-IC4,-PE1,-PE7,-RE2&-RE2 \\\hline -RE3&-IC1,-IC2,-RE3&-RE3 \\\hline \end{array} $$
抽取出+PE2、+PE4、+PE6、+RE1、+RE2、+RE3、-PE2、-PE4、-PE6、-RE1、-RE2、-RE3放置上层,删除后剩余的情况如下 抽取出+IC1,+IC2,+IC3,+IC4,+IC6,+IC7,-IC1,-IC2,-IC3,-IC4,-IC6,-IC7放置下层,删除后剩余的情况如下
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline +IC1&+IC1,+PE1,+PE7&+IC1 \\\hline +IC2&+IC2,+PE1,+PE7&+IC2 \\\hline +IC3&\color{red}{\fbox{+IC3}}&\color{red}{\fbox{+IC3}} \\\hline +IC4&+IC4,+PE7&+IC4 \\\hline +IC5&\color{red}{\fbox{+IC5}}&\color{red}{\fbox{+IC5}} \\\hline +IC6&+IC5,+IC6,+PE5&+IC6 \\\hline +IC7&\color{red}{\fbox{+IC7}}&\color{red}{\fbox{+IC7}} \\\hline +PE1&+PE1,+PE7&+PE1 \\\hline +PE5&\color{red}{\fbox{+PE5}}&\color{red}{\fbox{+PE5}} \\\hline +PE7&\color{red}{\fbox{+PE7}}&\color{red}{\fbox{+PE7}} \\\hline -IC1&-IC1,-PE1,-PE7&-IC1 \\\hline -IC2&-IC2,-PE1,-PE7&-IC2 \\\hline -IC3&\color{red}{\fbox{-IC3}}&\color{red}{\fbox{-IC3}} \\\hline -IC4&-IC4,-PE7&-IC4 \\\hline -IC5&\color{red}{\fbox{-IC5}}&\color{red}{\fbox{-IC5}} \\\hline -IC6&-IC5,-IC6,-PE5&-IC6 \\\hline -IC7&\color{red}{\fbox{-IC7}}&\color{red}{\fbox{-IC7}} \\\hline -PE1&-PE1,-PE7&-PE1 \\\hline -PE5&\color{red}{\fbox{-PE5}}&\color{red}{\fbox{-PE5}} \\\hline -PE7&\color{red}{\fbox{-PE7}}&\color{red}{\fbox{-PE7}} \\\hline \end{array} $$ $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline +IC5&\color{blue}{\fbox{+IC5}}&\color{blue}{\fbox{+IC5}} \\\hline +PE1&\color{blue}{\fbox{+PE1}}&\color{blue}{\fbox{+PE1}} \\\hline +PE2&+IC5,+PE2,+PE4,-IC5,-PE2,-PE4&+PE2,+PE4,-PE2,-PE4 \\\hline +PE4&+IC5,+PE2,+PE4,-IC5,-PE2,-PE4&+PE2,+PE4,-PE2,-PE4 \\\hline +PE5&\color{blue}{\fbox{+PE5}}&\color{blue}{\fbox{+PE5}} \\\hline +PE6&+PE6,-PE1,-PE5&+PE6 \\\hline +PE7&+PE1,+PE7&+PE7 \\\hline +RE1&+RE1,-IC5&+RE1 \\\hline +RE2&+PE1,+PE7,+RE2&+RE2 \\\hline +RE3&\color{blue}{\fbox{+RE3}}&\color{blue}{\fbox{+RE3}} \\\hline -IC5&\color{blue}{\fbox{-IC5}}&\color{blue}{\fbox{-IC5}} \\\hline -PE1&\color{blue}{\fbox{-PE1}}&\color{blue}{\fbox{-PE1}} \\\hline -PE2&+IC5,+PE2,+PE4,-IC5,-PE2,-PE4&+PE2,+PE4,-PE2,-PE4 \\\hline -PE4&+IC5,+PE2,+PE4,-IC5,-PE2,-PE4&+PE2,+PE4,-PE2,-PE4 \\\hline -PE5&\color{blue}{\fbox{-PE5}}&\color{blue}{\fbox{-PE5}} \\\hline -PE6&+PE1,+PE5,-PE6&-PE6 \\\hline -PE7&-PE1,-PE7&-PE7 \\\hline -RE1&+IC5,-RE1&-RE1 \\\hline -RE2&-PE1,-PE7,-RE2&-RE2 \\\hline -RE3&\color{blue}{\fbox{-RE3}}&\color{blue}{\fbox{-RE3}} \\\hline \end{array} $$
抽取出+IC3、+IC5、+IC7、+PE5、+PE7、-IC3、-IC5、-IC7、-PE5、-PE7放置上层,删除后剩余的情况如下 抽取出+IC5,+PE1,+PE5,+RE3,-IC5,-PE1,-PE5,-RE3放置下层,删除后剩余的情况如下
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline +IC1&+IC1,+PE1&+IC1 \\\hline +IC2&+IC2,+PE1&+IC2 \\\hline +IC4&\color{red}{\fbox{+IC4}}&\color{red}{\fbox{+IC4}} \\\hline +IC6&\color{red}{\fbox{+IC6}}&\color{red}{\fbox{+IC6}} \\\hline +PE1&\color{red}{\fbox{+PE1}}&\color{red}{\fbox{+PE1}} \\\hline -IC1&-IC1,-PE1&-IC1 \\\hline -IC2&-IC2,-PE1&-IC2 \\\hline -IC4&\color{red}{\fbox{-IC4}}&\color{red}{\fbox{-IC4}} \\\hline -IC6&\color{red}{\fbox{-IC6}}&\color{red}{\fbox{-IC6}} \\\hline -PE1&\color{red}{\fbox{-PE1}}&\color{red}{\fbox{-PE1}} \\\hline \end{array} $$ $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline +PE2&\color{blue}{\fbox{+PE2,+PE4,-PE2,-PE4}}&\color{blue}{\fbox{+PE2,+PE4,-PE2,-PE4}} \\\hline +PE4&\color{blue}{\fbox{+PE2,+PE4,-PE2,-PE4}}&\color{blue}{\fbox{+PE2,+PE4,-PE2,-PE4}} \\\hline +PE6&\color{blue}{\fbox{+PE6}}&\color{blue}{\fbox{+PE6}} \\\hline +PE7&\color{blue}{\fbox{+PE7}}&\color{blue}{\fbox{+PE7}} \\\hline +RE1&\color{blue}{\fbox{+RE1}}&\color{blue}{\fbox{+RE1}} \\\hline +RE2&+PE7,+RE2&+RE2 \\\hline -PE2&\color{blue}{\fbox{+PE2,+PE4,-PE2,-PE4}}&\color{blue}{\fbox{+PE2,+PE4,-PE2,-PE4}} \\\hline -PE4&\color{blue}{\fbox{+PE2,+PE4,-PE2,-PE4}}&\color{blue}{\fbox{+PE2,+PE4,-PE2,-PE4}} \\\hline -PE6&\color{blue}{\fbox{-PE6}}&\color{blue}{\fbox{-PE6}} \\\hline -PE7&\color{blue}{\fbox{-PE7}}&\color{blue}{\fbox{-PE7}} \\\hline -RE1&\color{blue}{\fbox{-RE1}}&\color{blue}{\fbox{-RE1}} \\\hline -RE2&-PE7,-RE2&-RE2 \\\hline \end{array} $$
抽取出+IC4、+IC6、+PE1、-IC4、-IC6、-PE1放置上层,删除后剩余的情况如下 抽取出+PE2,+PE4,+PE6,+PE7,+RE1,-PE2,-PE4,-PE6,-PE7,-RE1放置下层,删除后剩余的情况如下
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline +IC1&\color{red}{\fbox{+IC1}}&\color{red}{\fbox{+IC1}} \\\hline +IC2&\color{red}{\fbox{+IC2}}&\color{red}{\fbox{+IC2}} \\\hline -IC1&\color{red}{\fbox{-IC1}}&\color{red}{\fbox{-IC1}} \\\hline -IC2&\color{red}{\fbox{-IC2}}&\color{red}{\fbox{-IC2}} \\\hline \end{array} $$ $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline +RE2&\color{blue}{\fbox{+RE2}}&\color{blue}{\fbox{+RE2}} \\\hline -RE2&\color{blue}{\fbox{-RE2}}&\color{blue}{\fbox{-RE2}} \\\hline \end{array} $$
抽取出+IC1、+IC2、-IC1、-IC2放置上层,删除后剩余的情况如下 抽取出+RE2,-RE2放置下层,删除后剩余的情况如下

抽取方式的结果如下


层级 结果优先——UP型 原因优先——DOWN型
0 +PE2,+PE4,+PE6,+RE1,+RE2,+RE3,-PE2,-PE4,-PE6,-RE1,-RE2,-RE3 +RE2,-RE2
1 +IC3,+IC5,+IC7,+PE5,+PE7,-IC3,-IC5,-IC7,-PE5,-PE7 +PE2,+PE4,+PE6,+PE7,+RE1,-PE2,-PE4,-PE6,-PE7,-RE1
2 +IC4,+IC6,+PE1,-IC4,-IC6,-PE1 +IC5,+PE1,+PE5,+RE3,-IC5,-PE1,-PE5,-RE3
3 +IC1,+IC2,-IC1,-IC2 +IC1,+IC2,+IC3,+IC4,+IC6,+IC7,-IC1,-IC2,-IC3,-IC4,-IC6,-IC7

一般性骨架矩阵求解

$$S=\begin{array} {c|c|c|c|c|c|c|c}{M_{32 \times32}} &+IC1 &+IC2 &+IC3 &+IC4 &+IC5 &+IC6 &+IC7 &+PE1 &+PE2 &+PE4 &+PE5 &+PE6 &+PE7 &+RE1 &+RE2 &+RE3 &-IC1 &-IC2 &-IC3 &-IC4 &-IC5 &-IC6 &-IC7 &-PE1 &-PE2 &-PE4 &-PE5 &-PE6 &-PE7 &-RE1 &-RE2 &-RE3\\ \hline +IC1 & & & & & & & &1 & & & & & & & &1 & & & & & & & & & & & & & & & & \\ \hline +IC2 & & & & & & & &1 & & & & & & & &1 & & & & & & & & & & & & & & & & \\ \hline +IC3 & & & & & & & & & &1 & &1 & & & & & & & & & & & & & & & & & & & & \\ \hline +IC4 & & & & & & & & & & & & &1 & & & & & & & & & & & & & & & & & & & \\ \hline +IC5 & & & & & & & & & & & & & & & & & & & & & & & & &1 & & & & &1 & & \\ \hline +IC6 & & & & &1 & & & & & &1 & & & & & & & & & & & & & & & & & & & & & \\ \hline +IC7 & & & & & & & & & & & & & & & & & & & & & & & & &1 & & & & &1 & & \\ \hline +PE1 & & & & & & & & & & & & &1 & & & & & & & & & & & & & & &1 & & & & \\ \hline +PE2 & & & & & & & & & &1 & & & & & & & & & & & & & & & & & & & & & & \\ \hline +PE4 & & & & & & & & & & & & & & & & & & & & & & & & &1 & & & & & & & \\ \hline +PE5 & & & & & & & & & & & & & & & & & & & & & & & & & & & &1 & & & & \\ \hline +PE6 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\ \hline +PE7 & & & & & & & & & & & & & & &1 & & & & & & & & & & & & & & & & & \\ \hline +RE1 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\ \hline +RE2 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\ \hline +RE3 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\ \hline -IC1 & & & & & & & & & & & & & & & & & & & & & & & &1 & & & & & & & &1\\ \hline -IC2 & & & & & & & & & & & & & & & & & & & & & & & &1 & & & & & & & &1\\ \hline -IC3 & & & & & & & & & & & & & & & & & & & & & & & & & &1 & &1 & & & & \\ \hline -IC4 & & & & & & & & & & & & & & & & & & & & & & & & & & & & &1 & & & \\ \hline -IC5 & & & & & & & & &1 & & & & &1 & & & & & & & & & & & & & & & & & & \\ \hline -IC6 & & & & & & & & & & & & & & & & & & & & &1 & & & & & &1 & & & & & \\ \hline -IC7 & & & & & & & & &1 & & & & &1 & & & & & & & & & & & & & & & & & & \\ \hline -PE1 & & & & & & & & & & & &1 & & & & & & & & & & & & & & & & &1 & & & \\ \hline -PE2 & & & & & & & & & & & & & & & & & & & & & & & & & &1 & & & & & & \\ \hline -PE4 & & & & & & & & &1 & & & & & & & & & & & & & & & & & & & & & & & \\ \hline -PE5 & & & & & & & & & & & &1 & & & & & & & & & & & & & & & & & & & & \\ \hline -PE6 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\ \hline -PE7 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & &1 & \\ \hline -RE1 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\ \hline -RE2 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\ \hline -RE3 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\ \hline \end{array} $$

带综合影响值的对抗拓扑层级图


UP型

+RE2
+PE7
-PE6
+PE1
+RE3
+IC1
+IC2
+PE2
+PE4
-PE2
-PE4
+PE6
+IC3
+IC4
-RE1
+IC5
+PE5
+IC6
+IC7
+RE1
-RE2
-PE7
-PE1
-RE3
-IC1
-IC2
-IC3
-IC4
-IC5
-PE5
-IC6
-IC7

DOWN型

+RE2
+PE7
-PE6
+PE1
+RE3
+IC1
+IC2
+PE2
+PE4
-PE2
-PE4
+PE6
+IC3
+IC4
-RE1
+IC5
+PE5
+IC6
+IC7
+RE1
-RE2
-PE7
-PE1
-RE3
-IC1
-IC2
-IC3
-IC4
-IC5
-PE5
-IC6
-IC7

计算对称中心,确定是否需要拆分,并进行拆分


手性中心计算


需要进行手性拆分



+IC1 -IC1 +IC2 -IC2 +IC3 -IC3 +IC4 -IC4 +IC6 -IC6 +IC7 -IC7

请结合层次图谨慎选择,尤其是有回路的情况!!