流程图
灰度的操作
第一、每位专家打分为E共n个专家
第二、每个打分可以拆解我上界与下界两个值。
$$ \begin{array} {|c|c|c|c|} \hline { 值域范围 } &{5分制}& {表述一}& {表述二} & {下界}& { 上界} \\ \hline 0&0 &\color{red}{非常傻逼} &\color{blue}{垃圾} & \color{red}{ 0 } & \color{blue}{0 } \\ \hline 0-0.25&1 &\color{red}{真傻逼} &\color{blue}{有点挫} & \color{red}{ 0 } & \color{blue}{0.25} \\ \hline 0.25-0.5&2 &\color{red}{恩} &\color{blue}{还行} & \color{red}{ 0.25 } & \color{blue}{0.5} \\ \hline 0.5-0.75&3 &\color{red}{有点牛逼} &\color{blue}{好} & \color{red}{ 0.5 } & \color{blue}{0.75} \\ \hline 0.75-1 &4 &\color{red}{大神} &\color{blue}{哇塞} & \color{red}{ 0.75 } & \color{blue}{1} \\ \hline 1 &5 &\color{red}{永远的神} &\color{blue}{神一样的存在} & \color{red}{ 1 } & \color{blue}{1} \\ \hline \end{array} $$
第三、下界的值相加求平均值(不求亦可以)得到 min 直接影响矩阵, 上界的值相加求平均值(不求亦可以)得到 Max直接影响矩阵
清晰化上界矩阵与下界清晰化的算法
上界矩阵:$ O_{max}=UP=(u)_{n \times n}$
下界矩阵:$O_{min}=DOWN=(v)_{n \times n}$
清晰化矩阵:$O_{sharp}=SHARPEN=(s)_{n \times n}$
$ \tilde u_{ij}= \frac {u_{ij} - Min (u_{j})} { Max(u_{j})- Min (v_{j})} $
$ \tilde v_{ij}= \frac {v_{ij} - Min (v_{j})} { Max(u_{j})- Min (v_{j})} $
$ y_{ij}= \frac { \tilde v_{ij} (1- \tilde v_{ij})+\tilde u_{ij}^2 } {1- \tilde v_{ij} + \tilde u_{ij} } $
$ s_{ij}= y_{ij}[(Max(u_{j})- Min (v_{j})) ]+ Min (v_{j})$
由于主对角线中的值都为0,即 $Min (u_{j})=0 ,Min (v_{j})=0$ 故上述四个公式简化如下
$ \tilde u_{ij}= \frac {u_{ij} } { Max(u_{j})} $
$ \tilde v_{ij}= \frac {v_{ij} } { Max(u_{j})} $
$ y_{ij}= \frac { \tilde v_{ij} (1- \tilde v_{ij})+\tilde u_{ij}^2 } {1- \tilde v_{ij} + \tilde u_{ij} } $
$ s_{ij}= y_{ij}(Max(u_{j}))$
$ s_{ij}= Max(u_{j}) \frac { \tilde v_{ij} (1- \tilde v_{ij})+(\tilde u_{ij})^2 } {1-\tilde v_{ij} + \tilde u_{ij} }$
$ s_{ij}= Max(u_{j}) \frac { \tilde v_{ij} - (\tilde v_{ij})^2+(\tilde u_{ij})^2 } {1-\tilde v_{ij} + \tilde u_{ij} }$
$ s_{ij}= \frac{v_{ij}- \frac {(v_{ij})^2}{Max(u_{j})}+\frac {( u_{ij})^2}{Max(u_{j})}} {1- \frac {v_{ij}}{ Max(u_{j})} + \frac {u_{ij}}{Max(u_{j})} }$
$ s_{ij}= \frac{v_{ij}Max(u_{j})- (v_{ij})^2+( u_{ij})^2} {Max(u_{j})-v_{ij} + u_{ij}}$
实际清晰化矩阵的具有的解法:
在最终公式中 $ s_{ij}= \frac{v_{ij}Max(u_{j})- (v_{ij})^2+( u_{ij})^2} {Max(u_{j})-v_{ij} + u_{ij}}$
$ Max(u_{j})$表示每列中的最大值。可以替换为:
$ Max(u_{i})$每行中的最大值
$ Max(u_{ij})$上界矩阵中的最大值
清晰化矩阵的处理有千千万,最简单的方法是直接求和。平均数都不用算。
归一化方法选择,选择参数
三组数据分析
数据比对后分别得到直接影响矩阵$ O$为
$$O-Upper=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11 &F12 &F13 &F14 &F15\\ \hline F1 &0 &0.333 &0.167 &0 &0 &0.333 &0.083 &0.083 &0 &0 &0 &0.333 &0 &0.25 &0.667\\ \hline F2 &0.75 &0 &0.583 &0.667 &1 &0.583 &0.333 &0.667 &0 &0.333 &0.5 &0.083 &0.333 &0.833 &0.333\\ \hline F3 &1 &0.417 &0 &0.917 &1 &0.75 &0.083 &0.5 &0.167 &0.333 &0 &0.167 &0.083 &1 &0.667\\ \hline F4 &0 &0.083 &0.5 &0 &0 &0 &0.917 &1 &0.25 &0.083 &0 &0 &0 &0 &0.417\\ \hline F5 &0.333 &0.833 &0.417 &1 &0 &0 &1 &1 &0.083 &0 &0 &0 &0 &0.917 &0.167\\ \hline F6 &0.5 &0 &0.083 &0.833 &0.25 &0 &0.167 &0.167 &0.083 &0 &0 &0 &0 &0.417 &0\\ \hline F7 &0 &0.333 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0.417\\ \hline F8 &0.083 &0 &0 &0 &0.833 &0 &0 &0 &0 &0 &0 &0 &0 &0.083 &0.083\\ \hline F9 &0 &0 &0 &0 &0 &0 &0.833 &1 &0 &0 &0 &0 &0 &0 &0.333\\ \hline F10 &0 &0.417 &0 &0 &0 &0 &0.917 &1 &0.583 &0 &0 &0 &0 &0 &0.333\\ \hline F11 &1 &0.417 &1 &0.5 &0.5 &0.75 &0 &0.25 &0 &0 &0 &0 &1 &0.167 &0\\ \hline F12 &1 &1 &1 &0.333 &1 &0.583 &0 &0 &0 &0 &0 &0 &1 &0.75 &0\\ \hline F13 &1 &1 &1 &1 &1 &0.833 &0.083 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline F14 &0.083 &0.25 &0.333 &0 &0 &0 &0 &0.5 &0 &0 &0.167 &0 &0.25 &0 &0.917\\ \hline F15 &0.083 &0.083 &0.417 &0.75 &0.5 &0 &0 &0.333 &0 &0.333 &0 &0 &0.333 &0.083 &0\\ \hline \end{array} $$
$$O-Lower=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11 &F12 &F13 &F14 &F15\\ \hline F1 &0 &0.167 &0.083 &0 &0 &0.333 &0 &0 &0 &0 &0 &0.333 &0 &0.167 &0.417\\ \hline F2 &0.5 &0 &0.333 &0.417 &0.75 &0.333 &0.167 &0.417 &0 &0.25 &0.333 &0 &0.167 &0.583 &0.083\\ \hline F3 &0.75 &0.25 &0 &0.667 &0.75 &0.5 &0 &0.25 &0.083 &0.333 &0 &0 &0 &0.75 &0.417\\ \hline F4 &0 &0 &0.25 &0 &0 &0 &0.667 &0.75 &0.083 &0 &0 &0 &0 &0 &0.333\\ \hline F5 &0.167 &0.583 &0.167 &0.75 &0 &0 &0.75 &0.75 &0 &0 &0 &0 &0 &0.667 &0.083\\ \hline F6 &0.333 &0 &0 &0.583 &0 &0 &0.083 &0 &0 &0 &0 &0 &0 &0.25 &0\\ \hline F7 &0 &0.25 &0 &0 &0 &0 &0 &0.75 &0 &0 &0 &0 &0 &0 &0.25\\ \hline F8 &0 &0 &0 &0 &0.583 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline F9 &0 &0 &0 &0 &0 &0 &0.583 &0.75 &0 &0 &0 &0 &0 &0 &0.167\\ \hline F10 &0 &0.167 &0 &0 &0 &0 &0.667 &0.75 &0.333 &0 &0 &0 &0 &0 &0.083\\ \hline F11 &0.75 &0.25 &0.75 &0.25 &0.25 &0.5 &0 &0 &0 &0 &0 &0 &0.75 &0.083 &0\\ \hline F12 &0.75 &0.75 &0.75 &0.167 &0.75 &0.333 &0 &0 &0 &0 &0 &0 &0.75 &0.5 &0\\ \hline F13 &0.75 &0.75 &0.75 &0.75 &0.75 &0.583 &0 &0 &0 &0 &0 &0 &0 &0.75 &0\\ \hline F14 &0 &0.083 &0.25 &0 &0 &0 &0 &0.25 &0 &0 &0.083 &0 &0.167 &0 &0.667\\ \hline F15 &0 &0 &0.333 &0.5 &0.333 &0 &0 &0.25 &0 &0.083 &0 &0 &0.333 &0 &0\\ \hline \end{array} $$
$$O-Sharpen=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11 &F12 &F13 &F14 &F15\\ \hline F1 &0 &0.214 &0.096 &0 &0 &0.333 &0.006 &0.006 &0 &0 &0 &0.333 &0 &0.186 &0.55\\ \hline F2 &0.65 &0 &0.45 &0.55 &0.95 &0.45 &0.214 &0.55 &0 &0.276 &0.405 &0.006 &0.214 &0.75 &0.15\\ \hline F3 &0.95 &0.31 &0 &0.85 &0.95 &0.65 &0.006 &0.35 &0.096 &0.333 &0 &0.024 &0.006 &0.95 &0.55\\ \hline F4 &0 &0.006 &0.35 &0 &0 &0 &0.85 &0.95 &0.119 &0.006 &0 &0 &0 &0 &0.365\\ \hline F5 &0.214 &0.75 &0.25 &0.95 &0 &0 &0.95 &0.95 &0.006 &0 &0 &0 &0 &0.85 &0.096\\ \hline F6 &0.417 &0 &0.008 &0.776 &0.058 &0 &0.098 &0.028 &0.008 &0 &0 &0 &0 &0.319 &0\\ \hline F7 &0 &0.276 &0 &0 &0 &0 &0 &0.95 &0 &0 &0 &0 &0 &0 &0.31\\ \hline F8 &0.006 &0 &0 &0 &0.75 &0 &0 &0 &0 &0 &0 &0 &0 &0.006 &0.006\\ \hline F9 &0 &0 &0 &0 &0 &0 &0.833 &1.05 &0 &0 &0 &0 &0 &0 &0.241\\ \hline F10 &0 &0.345 &0 &0 &0 &0 &1.06 &1.179 &0.583 &0 &0 &0 &0 &0 &0.226\\ \hline F11 &1.083 &0.354 &1.083 &0.417 &0.417 &0.75 &0 &0.083 &0 &0 &0 &0 &1.083 &0.107 &0\\ \hline F12 &1.179 &1.179 &1.179 &0.278 &1.179 &0.583 &0 &0 &0 &0 &0 &0 &1.179 &0.821 &0\\ \hline F13 &0.95 &0.95 &0.95 &0.95 &0.95 &0.75 &0.006 &0 &0 &0 &0 &0 &0 &0.95 &0\\ \hline F14 &0.006 &0.119 &0.276 &0 &0 &0 &0 &0.35 &0 &0 &0.096 &0 &0.186 &0 &0.85\\ \hline F15 &0.007 &0.007 &0.368 &0.661 &0.41 &0 &0 &0.278 &0 &0.155 &0 &0 &0.333 &0.007 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$
- 归一化方法中最大值:7.0833333333333$$\mathcal{N-Upper}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11 &F12 &F13 &F14 &F15\\ \hline F1 &0 &0.047 &0.024 &0 &0 &0.047 &0.012 &0.012 &0 &0 &0 &0.047 &0 &0.035 &0.094\\ \hline F2 &0.106 &0 &0.082 &0.094 &0.141 &0.082 &0.047 &0.094 &0 &0.047 &0.071 &0.012 &0.047 &0.118 &0.047\\ \hline F3 &0.141 &0.059 &0 &0.129 &0.141 &0.106 &0.012 &0.071 &0.024 &0.047 &0 &0.024 &0.012 &0.141 &0.094\\ \hline F4 &0 &0.012 &0.071 &0 &0 &0 &0.129 &0.141 &0.035 &0.012 &0 &0 &0 &0 &0.059\\ \hline F5 &0.047 &0.118 &0.059 &0.141 &0 &0 &0.141 &0.141 &0.012 &0 &0 &0 &0 &0.129 &0.024\\ \hline F6 &0.071 &0 &0.012 &0.118 &0.035 &0 &0.024 &0.024 &0.012 &0 &0 &0 &0 &0.059 &0\\ \hline F7 &0 &0.047 &0 &0 &0 &0 &0 &0.141 &0 &0 &0 &0 &0 &0 &0.059\\ \hline F8 &0.012 &0 &0 &0 &0.118 &0 &0 &0 &0 &0 &0 &0 &0 &0.012 &0.012\\ \hline F9 &0 &0 &0 &0 &0 &0 &0.118 &0.141 &0 &0 &0 &0 &0 &0 &0.047\\ \hline F10 &0 &0.059 &0 &0 &0 &0 &0.129 &0.141 &0.082 &0 &0 &0 &0 &0 &0.047\\ \hline F11 &0.141 &0.059 &0.141 &0.071 &0.071 &0.106 &0 &0.035 &0 &0 &0 &0 &0.141 &0.024 &0\\ \hline F12 &0.141 &0.141 &0.141 &0.047 &0.141 &0.082 &0 &0 &0 &0 &0 &0 &0.141 &0.106 &0\\ \hline F13 &0.141 &0.141 &0.141 &0.141 &0.141 &0.118 &0.012 &0 &0 &0 &0 &0 &0 &0.141 &0\\ \hline F14 &0.012 &0.035 &0.047 &0 &0 &0 &0 &0.071 &0 &0 &0.024 &0 &0.035 &0 &0.129\\ \hline F15 &0.012 &0.012 &0.059 &0.106 &0.071 &0 &0 &0.047 &0 &0.047 &0 &0 &0.047 &0.012 &0\\ \hline \end{array} $$归一化方法中最大值:4.9166666666667$$\mathcal{N-Lower}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11 &F12 &F13 &F14 &F15\\ \hline F1 &0 &0.034 &0.017 &0 &0 &0.068 &0 &0 &0 &0 &0 &0.068 &0 &0.034 &0.085\\ \hline F2 &0.102 &0 &0.068 &0.085 &0.153 &0.068 &0.034 &0.085 &0 &0.051 &0.068 &0 &0.034 &0.119 &0.017\\ \hline F3 &0.153 &0.051 &0 &0.136 &0.153 &0.102 &0 &0.051 &0.017 &0.068 &0 &0 &0 &0.153 &0.085\\ \hline F4 &0 &0 &0.051 &0 &0 &0 &0.136 &0.153 &0.017 &0 &0 &0 &0 &0 &0.068\\ \hline F5 &0.034 &0.119 &0.034 &0.153 &0 &0 &0.153 &0.153 &0 &0 &0 &0 &0 &0.136 &0.017\\ \hline F6 &0.068 &0 &0 &0.119 &0 &0 &0.017 &0 &0 &0 &0 &0 &0 &0.051 &0\\ \hline F7 &0 &0.051 &0 &0 &0 &0 &0 &0.153 &0 &0 &0 &0 &0 &0 &0.051\\ \hline F8 &0 &0 &0 &0 &0.119 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline F9 &0 &0 &0 &0 &0 &0 &0.119 &0.153 &0 &0 &0 &0 &0 &0 &0.034\\ \hline F10 &0 &0.034 &0 &0 &0 &0 &0.136 &0.153 &0.068 &0 &0 &0 &0 &0 &0.017\\ \hline F11 &0.153 &0.051 &0.153 &0.051 &0.051 &0.102 &0 &0 &0 &0 &0 &0 &0.153 &0.017 &0\\ \hline F12 &0.153 &0.153 &0.153 &0.034 &0.153 &0.068 &0 &0 &0 &0 &0 &0 &0.153 &0.102 &0\\ \hline F13 &0.153 &0.153 &0.153 &0.153 &0.153 &0.119 &0 &0 &0 &0 &0 &0 &0 &0.153 &0\\ \hline F14 &0 &0.017 &0.051 &0 &0 &0 &0 &0.051 &0 &0 &0.017 &0 &0.034 &0 &0.136\\ \hline F15 &0 &0 &0.068 &0.102 &0.068 &0 &0 &0.051 &0 &0.017 &0 &0 &0.068 &0 &0\\ \hline \end{array} $$归一化方法中最大值:6.7238705738706$$\mathcal{N-Sharpen}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11 &F12 &F13 &F14 &F15\\ \hline F1 &0 &0.032 &0.014 &0 &0 &0.05 &0.001 &0.001 &0 &0 &0 &0.05 &0 &0.028 &0.082\\ \hline F2 &0.097 &0 &0.067 &0.082 &0.141 &0.067 &0.032 &0.082 &0 &0.041 &0.06 &0.001 &0.032 &0.112 &0.022\\ \hline F3 &0.141 &0.046 &0 &0.126 &0.141 &0.097 &0.001 &0.052 &0.014 &0.05 &0 &0.004 &0.001 &0.141 &0.082\\ \hline F4 &0 &0.001 &0.052 &0 &0 &0 &0.126 &0.141 &0.018 &0.001 &0 &0 &0 &0 &0.054\\ \hline F5 &0.032 &0.112 &0.037 &0.141 &0 &0 &0.141 &0.141 &0.001 &0 &0 &0 &0 &0.126 &0.014\\ \hline F6 &0.062 &0 &0.001 &0.115 &0.009 &0 &0.015 &0.004 &0.001 &0 &0 &0 &0 &0.048 &0\\ \hline F7 &0 &0.041 &0 &0 &0 &0 &0 &0.141 &0 &0 &0 &0 &0 &0 &0.046\\ \hline F8 &0.001 &0 &0 &0 &0.112 &0 &0 &0 &0 &0 &0 &0 &0 &0.001 &0.001\\ \hline F9 &0 &0 &0 &0 &0 &0 &0.124 &0.156 &0 &0 &0 &0 &0 &0 &0.036\\ \hline F10 &0 &0.051 &0 &0 &0 &0 &0.158 &0.175 &0.087 &0 &0 &0 &0 &0 &0.034\\ \hline F11 &0.161 &0.053 &0.161 &0.062 &0.062 &0.112 &0 &0.012 &0 &0 &0 &0 &0.161 &0.016 &0\\ \hline F12 &0.175 &0.175 &0.175 &0.041 &0.175 &0.087 &0 &0 &0 &0 &0 &0 &0.175 &0.122 &0\\ \hline F13 &0.141 &0.141 &0.141 &0.141 &0.141 &0.112 &0.001 &0 &0 &0 &0 &0 &0 &0.141 &0\\ \hline F14 &0.001 &0.018 &0.041 &0 &0 &0 &0 &0.052 &0 &0 &0.014 &0 &0.028 &0 &0.126\\ \hline F15 &0.001 &0.001 &0.055 &0.098 &0.061 &0 &0 &0.041 &0 &0.023 &0 &0 &0.05 &0.001 &0\\ \hline \end{array} $$
综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
Upper综合影响矩阵$$T-Upper=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11 &F12 &F13 &F14 &F15\\ \hline F1 &0.038 &0.076 &0.06 &0.049 &0.048 &0.069 &0.034 &0.057 &0.006 &0.013 &0.007 &0.051 &0.021 &0.075 &0.124\\ \hline F2 &0.195 &0.09 &0.171 &0.21 &0.243 &0.138 &0.133 &0.241 &0.022 &0.069 &0.082 &0.026 &0.083 &0.22 &0.147\\ \hline F3 &0.209 &0.134 &0.083 &0.231 &0.228 &0.145 &0.102 &0.216 &0.044 &0.069 &0.015 &0.037 &0.043 &0.229 &0.19\\ \hline F4 &0.026 &0.037 &0.089 &0.036 &0.051 &0.016 &0.153 &0.201 &0.041 &0.023 &0.003 &0.004 &0.009 &0.031 &0.093\\ \hline F5 &0.101 &0.166 &0.117 &0.205 &0.086 &0.036 &0.197 &0.262 &0.025 &0.021 &0.016 &0.009 &0.025 &0.192 &0.108\\ \hline F6 &0.086 &0.023 &0.037 &0.14 &0.058 &0.012 &0.056 &0.077 &0.019 &0.006 &0.004 &0.005 &0.007 &0.081 &0.038\\ \hline F7 &0.016 &0.058 &0.016 &0.023 &0.037 &0.009 &0.013 &0.165 &0.002 &0.007 &0.005 &0.002 &0.008 &0.019 &0.072\\ \hline F8 &0.025 &0.022 &0.017 &0.027 &0.13 &0.006 &0.024 &0.034 &0.003 &0.003 &0.002 &0.002 &0.004 &0.036 &0.028\\ \hline F9 &0.008 &0.012 &0.009 &0.014 &0.028 &0.003 &0.125 &0.171 &0.001 &0.004 &0.001 &0.001 &0.004 &0.01 &0.062\\ \hline F10 &0.02 &0.078 &0.02 &0.028 &0.045 &0.011 &0.155 &0.201 &0.085 &0.009 &0.006 &0.002 &0.01 &0.024 &0.076\\ \hline F11 &0.242 &0.145 &0.225 &0.194 &0.181 &0.175 &0.074 &0.156 &0.018 &0.024 &0.014 &0.018 &0.165 &0.143 &0.093\\ \hline F12 &0.265 &0.249 &0.251 &0.202 &0.275 &0.167 &0.095 &0.161 &0.021 &0.032 &0.024 &0.021 &0.177 &0.257 &0.122\\ \hline F13 &0.239 &0.225 &0.231 &0.269 &0.249 &0.18 &0.109 &0.165 &0.022 &0.03 &0.022 &0.019 &0.034 &0.262 &0.121\\ \hline F14 &0.051 &0.065 &0.085 &0.055 &0.058 &0.027 &0.024 &0.118 &0.006 &0.015 &0.029 &0.005 &0.053 &0.043 &0.159\\ \hline F15 &0.051 &0.053 &0.098 &0.157 &0.12 &0.025 &0.052 &0.123 &0.014 &0.058 &0.005 &0.005 &0.056 &0.061 &0.044\\ \hline \end{array} $$Lower综合影响矩阵$$T-Lower=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11 &F12 &F13 &F14 &F15\\ \hline F1 &0.036 &0.06 &0.051 &0.046 &0.043 &0.088 &0.018 &0.035 &0.002 &0.008 &0.005 &0.07 &0.023 &0.071 &0.108\\ \hline F2 &0.167 &0.066 &0.131 &0.18 &0.228 &0.113 &0.107 &0.202 &0.01 &0.065 &0.076 &0.011 &0.063 &0.201 &0.093\\ \hline F3 &0.196 &0.103 &0.059 &0.223 &0.216 &0.133 &0.083 &0.178 &0.027 &0.08 &0.011 &0.013 &0.026 &0.222 &0.163\\ \hline F4 &0.015 &0.019 &0.064 &0.028 &0.044 &0.01 &0.15 &0.201 &0.019 &0.007 &0.002 &0.001 &0.008 &0.02 &0.089\\ \hline F5 &0.072 &0.152 &0.079 &0.203 &0.076 &0.027 &0.2 &0.259 &0.006 &0.015 &0.013 &0.005 &0.02 &0.184 &0.083\\ \hline F6 &0.074 &0.009 &0.015 &0.128 &0.011 &0.008 &0.037 &0.034 &0.003 &0.002 &0.002 &0.005 &0.005 &0.06 &0.027\\ \hline F7 &0.012 &0.059 &0.013 &0.021 &0.037 &0.007 &0.011 &0.173 &0.001 &0.005 &0.004 &0.001 &0.007 &0.016 &0.059\\ \hline F8 &0.009 &0.018 &0.009 &0.024 &0.128 &0.003 &0.024 &0.031 &0.001 &0.002 &0.002 &0.001 &0.002 &0.022 &0.01\\ \hline F9 &0.004 &0.011 &0.006 &0.011 &0.028 &0.002 &0.125 &0.182 &0 &0.002 &0.001 &0 &0.004 &0.007 &0.044\\ \hline F10 &0.009 &0.048 &0.01 &0.016 &0.036 &0.006 &0.154 &0.202 &0.068 &0.004 &0.003 &0.001 &0.005 &0.014 &0.033\\ \hline F11 &0.246 &0.123 &0.221 &0.169 &0.149 &0.172 &0.057 &0.094 &0.008 &0.023 &0.011 &0.017 &0.17 &0.13 &0.077\\ \hline F12 &0.27 &0.249 &0.247 &0.19 &0.284 &0.153 &0.086 &0.144 &0.01 &0.031 &0.021 &0.018 &0.183 &0.255 &0.105\\ \hline F13 &0.24 &0.22 &0.225 &0.279 &0.254 &0.179 &0.092 &0.151 &0.01 &0.028 &0.02 &0.016 &0.03 &0.271 &0.109\\ \hline F14 &0.03 &0.039 &0.081 &0.049 &0.048 &0.021 &0.017 &0.087 &0.003 &0.01 &0.02 &0.002 &0.05 &0.034 &0.156\\ \hline F15 &0.037 &0.036 &0.1 &0.154 &0.116 &0.024 &0.045 &0.116 &0.006 &0.026 &0.003 &0.002 &0.074 &0.049 &0.034\\ \hline \end{array} $$Sharpen综合影响矩阵$$T-Sharpen=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11 &F12 &F13 &F14 &F15\\ \hline F1 &0.028 &0.052 &0.041 &0.037 &0.035 &0.065 &0.014 &0.028 &0.002 &0.007 &0.004 &0.051 &0.018 &0.057 &0.099\\ \hline F2 &0.153 &0.056 &0.121 &0.164 &0.207 &0.104 &0.095 &0.183 &0.009 &0.051 &0.066 &0.009 &0.055 &0.181 &0.087\\ \hline F3 &0.178 &0.091 &0.049 &0.2 &0.194 &0.121 &0.071 &0.159 &0.024 &0.059 &0.008 &0.013 &0.02 &0.198 &0.147\\ \hline F4 &0.013 &0.016 &0.062 &0.023 &0.037 &0.008 &0.139 &0.182 &0.02 &0.006 &0.001 &0.001 &0.005 &0.017 &0.072\\ \hline F5 &0.064 &0.139 &0.074 &0.183 &0.064 &0.023 &0.181 &0.232 &0.006 &0.011 &0.011 &0.004 &0.015 &0.166 &0.07\\ \hline F6 &0.067 &0.009 &0.015 &0.124 &0.019 &0.006 &0.034 &0.035 &0.004 &0.002 &0.001 &0.003 &0.004 &0.056 &0.023\\ \hline F7 &0.009 &0.047 &0.01 &0.016 &0.03 &0.005 &0.008 &0.157 &0.001 &0.004 &0.003 &0.001 &0.005 &0.012 &0.052\\ \hline F8 &0.008 &0.016 &0.008 &0.021 &0.119 &0.003 &0.02 &0.026 &0.001 &0.001 &0.001 &0 &0.002 &0.02 &0.009\\ \hline F9 &0.003 &0.009 &0.005 &0.01 &0.026 &0.002 &0.129 &0.183 &0 &0.002 &0.001 &0 &0.003 &0.006 &0.045\\ \hline F10 &0.012 &0.066 &0.012 &0.02 &0.042 &0.007 &0.18 &0.233 &0.088 &0.005 &0.004 &0.001 &0.006 &0.016 &0.053\\ \hline F11 &0.25 &0.122 &0.226 &0.176 &0.156 &0.176 &0.055 &0.104 &0.008 &0.018 &0.009 &0.013 &0.176 &0.123 &0.073\\ \hline F12 &0.296 &0.275 &0.272 &0.203 &0.31 &0.173 &0.087 &0.148 &0.01 &0.027 &0.021 &0.016 &0.203 &0.278 &0.109\\ \hline F13 &0.214 &0.197 &0.201 &0.246 &0.225 &0.16 &0.077 &0.126 &0.009 &0.02 &0.015 &0.012 &0.022 &0.239 &0.09\\ \hline F14 &0.024 &0.034 &0.064 &0.039 &0.038 &0.016 &0.013 &0.08 &0.002 &0.008 &0.017 &0.001 &0.039 &0.025 &0.141\\ \hline F15 &0.027 &0.028 &0.079 &0.136 &0.096 &0.017 &0.037 &0.095 &0.006 &0.029 &0.002 &0.002 &0.053 &0.037 &0.026\\ \hline \end{array} $$