规范化方法选择(参数选择):
原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11 &F12\\ \hline F1 &0 &2 &1 &2 &1 &3 &3 &1 &1 &3 &17 &11\\ \hline F2 &2 &0 &3 &3 &1 &5 &1 &4 &1 &13 &4 &1\\ \hline F3 &1 &1 &0 &10 &1 &13 &2 &2 &2 &2 &2 &0\\ \hline F4 &13 &10 &14 &0 &5 &9 &19 &9 &8 &9 &9 &6\\ \hline F5 &1 &1 &3 &7 &0 &1 &1 &1 &15 &10 &10 &10\\ \hline F6 &1 &15 &12 &10 &11 &0 &2 &1 &1 &1 &13 &3\\ \hline F7 &2 &4 &4 &5 &5 &6 &0 &8 &2 &3 &2 &14\\ \hline F8 &1 &16 &12 &10 &2 &0 &1 &0 &3 &12 &10 &13\\ \hline F9 &1 &2 &3 &4 &5 &6 &7 &2 &0 &10 &10 &12\\ \hline F10 &5 &0 &13 &13 &0 &0 &0 &0 &1 &0 &3 &11\\ \hline F11 &3 &13 &0 &0 &0 &0 &0 &0 &0 &1 &0 &11\\ \hline F12 &0 &3 &1 &0 &0 &0 &0 &9 &0 &1 &12 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程
- $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11 &F12\\ \hline F1 &0 &0.018 &0.009 &0.018 &0.009 &0.027 &0.027 &0.009 &0.009 &0.027 &0.153 &0.099\\ \hline F2 &0.018 &0 &0.027 &0.027 &0.009 &0.045 &0.009 &0.036 &0.009 &0.117 &0.036 &0.009\\ \hline F3 &0.009 &0.009 &0 &0.09 &0.009 &0.117 &0.018 &0.018 &0.018 &0.018 &0.018 &0\\ \hline F4 &0.117 &0.09 &0.126 &0 &0.045 &0.081 &0.171 &0.081 &0.072 &0.081 &0.081 &0.054\\ \hline F5 &0.009 &0.009 &0.027 &0.063 &0 &0.009 &0.009 &0.009 &0.135 &0.09 &0.09 &0.09\\ \hline F6 &0.009 &0.135 &0.108 &0.09 &0.099 &0 &0.018 &0.009 &0.009 &0.009 &0.117 &0.027\\ \hline F7 &0.018 &0.036 &0.036 &0.045 &0.045 &0.054 &0 &0.072 &0.018 &0.027 &0.018 &0.126\\ \hline F8 &0.009 &0.144 &0.108 &0.09 &0.018 &0 &0.009 &0 &0.027 &0.108 &0.09 &0.117\\ \hline F9 &0.009 &0.018 &0.027 &0.036 &0.045 &0.054 &0.063 &0.018 &0 &0.09 &0.09 &0.108\\ \hline F10 &0.045 &0 &0.117 &0.117 &0 &0 &0 &0 &0.009 &0 &0.027 &0.099\\ \hline F11 &0.027 &0.117 &0 &0 &0 &0 &0 &0 &0 &0.009 &0 &0.099\\ \hline F12 &0 &0.027 &0.009 &0 &0 &0 &0 &0.081 &0 &0.009 &0.108 &0\\ \hline \end{array} $$
综合影响矩阵求解过程
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10 &F11 &F12\\ \hline F1 &0.015 &0.06 &0.032 &0.038 &0.019 &0.04 &0.037 &0.03 &0.018 &0.049 &0.189 &0.14\\ \hline F2 &0.037 &0.035 &0.068 &0.065 &0.023 &0.064 &0.026 &0.052 &0.022 &0.141 &0.076 &0.053\\ \hline F3 &0.032 &0.058 &0.047 &0.124 &0.034 &0.141 &0.047 &0.041 &0.037 &0.051 &0.07 &0.044\\ \hline F4 &0.153 &0.179 &0.206 &0.088 &0.084 &0.142 &0.207 &0.133 &0.107 &0.159 &0.195 &0.175\\ \hline F5 &0.036 &0.057 &0.073 &0.103 &0.019 &0.04 &0.04 &0.04 &0.151 &0.131 &0.152 &0.157\\ \hline F6 &0.041 &0.19 &0.156 &0.138 &0.118 &0.045 &0.052 &0.044 &0.043 &0.07 &0.181 &0.093\\ \hline F7 &0.039 &0.088 &0.083 &0.087 &0.063 &0.08 &0.024 &0.102 &0.04 &0.071 &0.085 &0.178\\ \hline F8 &0.045 &0.199 &0.167 &0.145 &0.038 &0.047 &0.045 &0.042 &0.052 &0.165 &0.162 &0.184\\ \hline F9 &0.034 &0.071 &0.075 &0.08 &0.064 &0.08 &0.084 &0.05 &0.021 &0.126 &0.151 &0.17\\ \hline F10 &0.07 &0.04 &0.152 &0.146 &0.016 &0.037 &0.033 &0.031 &0.027 &0.032 &0.081 &0.139\\ \hline F11 &0.033 &0.129 &0.013 &0.012 &0.004 &0.01 &0.005 &0.016 &0.004 &0.03 &0.027 &0.113\\ \hline F12 &0.009 &0.059 &0.028 &0.017 &0.005 &0.008 &0.006 &0.088 &0.006 &0.03 &0.128 &0.03\\ \hline \end{array} $$