DEMATEL-ANP流程图如下:
重点:
第一、直接影响矩阵同ANP/AHP的原始矩阵有着根本的不同。ANP与AHP是基于正互反判断矩阵
第二、必须是基于综合影响矩阵T的求解。这是由于影响的传递性决定的。
有向网络如上图:其中A对C无直接影响。很显然A对C的影响是由A对B施加影响,B对C施加影响。A对C的影响是通过B为中介获得的。
$ T=\mathcal{N}+\mathcal{N}^2+\mathcal{N}^3+\cdots+\mathcal{N}^k $
其中:$ \mathcal{N}\times\mathcal{N} $的意义为增加的间接影响。即矩阵与矩阵相乘得到的值为矩阵要素之间增加的间接影响。
$ \mathcal{N}^\infty $为零阵。意思是影响不停的传递下去,其值为零。
$ \mathcal{N}^\infty $为零阵。前提要求是主对角线的值全部为0
综合影响矩阵$ T= \sum\limits_{k=1}^\infty {\mathcal{N}^k} $的意义为最初的直接影响加上所有的间接影响。
综合影响矩阵$ T=\mathcal{N}(I-\mathcal{N})^{-1} $
原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{16 \times16}} &A1 &A2 &A3 &A4 &A5 &B1 &B2 &B3 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &D4\\ \hline A1 &0 &37 &38 &36 &32 &40 &32 &34 &38 &32 &33 &31 &23 &28 &35 &33\\ \hline A2 &43 &0 &40 &41 &36 &40 &38 &40 &45 &39 &43 &43 &41 &38 &37 &35\\ \hline A3 &37 &41 &0 &43 &41 &38 &36 &41 &45 &42 &41 &43 &32 &34 &41 &39\\ \hline A4 &39 &40 &42 &0 &39 &40 &43 &42 &38 &37 &39 &41 &46 &43 &40 &42\\ \hline A5 &32 &28 &31 &33 &0 &26 &24 &25 &29 &27 &21 &23 &22 &21 &27 &24\\ \hline B1 &41 &39 &40 &42 &39 &0 &44 &46 &38 &38 &42 &39 &43 &41 &40 &42\\ \hline B2 &33 &34 &32 &35 &27 &38 &0 &39 &32 &30 &26 &27 &28 &32 &33 &32\\ \hline B3 &36 &37 &33 &38 &34 &41 &37 &0 &33 &29 &28 &30 &31 &32 &37 &32\\ \hline C1 &46 &46 &39 &42 &35 &40 &38 &35 &0 &41 &37 &38 &31 &36 &41 &36\\ \hline C2 &33 &31 &32 &30 &31 &28 &26 &28 &36 &0 &34 &33 &27 &26 &29 &25\\ \hline C3 &31 &32 &29 &32 &33 &31 &32 &28 &35 &30 &0 &26 &29 &31 &33 &22\\ \hline C4 &33 &32 &30 &33 &29 &33 &34 &33 &31 &32 &31 &0 &28 &30 &32 &24\\ \hline D1 &33 &35 &32 &34 &25 &34 &32 &30 &29 &24 &28 &32 &0 &34 &32 &31\\ \hline D2 &34 &37 &32 &33 &25 &31 &33 &28 &32 &27 &25 &34 &30 &0 &31 &29\\ \hline D3 &35 &36 &31 &42 &31 &33 &32 &28 &34 &33 &27 &34 &29 &33 &0 &31\\ \hline D4 &44 &37 &42 &45 &38 &44 &42 &43 &46 &35 &39 &42 &38 &40 &44 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程
$$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$
综合影响矩阵求解过程
$$\begin{CD} N @>>>T \\ \end{CD} $$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{16 \times16}} &A1 &A2 &A3 &A4 &A5 &B1 &B2 &B3 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &D4\\ \hline A1 &0.284 &0.337 &0.329 &0.344 &0.307 &0.339 &0.32 &0.322 &0.338 &0.308 &0.308 &0.316 &0.285 &0.303 &0.329 &0.3\\ \hline A2 &0.398 &0.329 &0.378 &0.4 &0.356 &0.386 &0.375 &0.377 &0.395 &0.362 &0.366 &0.378 &0.354 &0.361 &0.379 &0.345\\ \hline A3 &0.387 &0.388 &0.315 &0.401 &0.362 &0.381 &0.37 &0.376 &0.393 &0.364 &0.361 &0.376 &0.339 &0.354 &0.383 &0.349\\ \hline A4 &0.398 &0.395 &0.387 &0.344 &0.366 &0.392 &0.388 &0.385 &0.391 &0.364 &0.366 &0.381 &0.366 &0.374 &0.389 &0.361\\ \hline A5 &0.274 &0.265 &0.262 &0.279 &0.204 &0.26 &0.252 &0.252 &0.266 &0.246 &0.236 &0.248 &0.231 &0.238 &0.26 &0.235\\ \hline B1 &0.402 &0.395 &0.385 &0.409 &0.367 &0.333 &0.391 &0.393 &0.393 &0.367 &0.371 &0.38 &0.363 &0.373 &0.391 &0.362\\ \hline B2 &0.322 &0.32 &0.308 &0.329 &0.287 &0.323 &0.259 &0.317 &0.316 &0.292 &0.286 &0.297 &0.281 &0.297 &0.313 &0.287\\ \hline B3 &0.341 &0.339 &0.324 &0.349 &0.311 &0.342 &0.33 &0.272 &0.332 &0.305 &0.302 &0.316 &0.299 &0.311 &0.334 &0.3\\ \hline C1 &0.394 &0.39 &0.369 &0.393 &0.348 &0.378 &0.368 &0.362 &0.32 &0.357 &0.35 &0.364 &0.332 &0.351 &0.377 &0.339\\ \hline C2 &0.304 &0.297 &0.29 &0.303 &0.277 &0.291 &0.282 &0.283 &0.304 &0.23 &0.281 &0.289 &0.263 &0.271 &0.29 &0.261\\ \hline C3 &0.303 &0.301 &0.288 &0.308 &0.282 &0.297 &0.293 &0.286 &0.305 &0.278 &0.231 &0.281 &0.268 &0.281 &0.298 &0.258\\ \hline C4 &0.312 &0.307 &0.296 &0.316 &0.282 &0.306 &0.302 &0.299 &0.305 &0.287 &0.284 &0.246 &0.272 &0.285 &0.303 &0.267\\ \hline D1 &0.314 &0.314 &0.301 &0.32 &0.277 &0.31 &0.301 &0.297 &0.304 &0.277 &0.282 &0.298 &0.231 &0.293 &0.305 &0.279\\ \hline D2 &0.313 &0.314 &0.298 &0.316 &0.275 &0.303 &0.3 &0.292 &0.306 &0.279 &0.275 &0.298 &0.275 &0.238 &0.301 &0.274\\ \hline D3 &0.33 &0.327 &0.311 &0.344 &0.298 &0.321 &0.313 &0.306 &0.324 &0.301 &0.292 &0.312 &0.287 &0.303 &0.267 &0.29\\ \hline D4 &0.411 &0.396 &0.392 &0.418 &0.37 &0.403 &0.392 &0.392 &0.408 &0.366 &0.371 &0.388 &0.36 &0.375 &0.4 &0.302\\ \hline \end{array} $$
行向量加权矩阵C如下
$$C=\begin{array}{c|c|c|c|c|c|c}{M_{16 \times16}} &A1 &A2 &A3 &A4 &A5 &B1 &B2 &B3 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &D4\\ \hline A1 &0.0561 &0.0665 &0.0649 &0.0678 &0.0605 &0.0668 &0.0632 &0.0636 &0.0666 &0.0607 &0.0608 &0.0623 &0.0563 &0.0597 &0.0649 &0.0592\\ \hline A2 &0.067 &0.0553 &0.0637 &0.0673 &0.06 &0.065 &0.0632 &0.0634 &0.0666 &0.0609 &0.0616 &0.0637 &0.0595 &0.0609 &0.0638 &0.0581\\ \hline A3 &0.0656 &0.0658 &0.0535 &0.0679 &0.0613 &0.0646 &0.0628 &0.0637 &0.0667 &0.0617 &0.0612 &0.0638 &0.0574 &0.0599 &0.0648 &0.0591\\ \hline A4 &0.0658 &0.0653 &0.0639 &0.0569 &0.0605 &0.0648 &0.0642 &0.0637 &0.0647 &0.0602 &0.0604 &0.063 &0.0606 &0.0619 &0.0643 &0.0596\\ \hline A5 &0.0683 &0.0661 &0.0654 &0.0695 &0.0508 &0.0649 &0.0628 &0.063 &0.0664 &0.0614 &0.059 &0.0618 &0.0577 &0.0594 &0.0648 &0.0585\\ \hline B1 &0.0662 &0.065 &0.0634 &0.0673 &0.0605 &0.0548 &0.0644 &0.0646 &0.0646 &0.0604 &0.0611 &0.0625 &0.0598 &0.0614 &0.0643 &0.0596\\ \hline B2 &0.0666 &0.0661 &0.0637 &0.068 &0.0594 &0.0669 &0.0536 &0.0656 &0.0654 &0.0605 &0.0591 &0.0615 &0.0581 &0.0614 &0.0648 &0.0594\\ \hline B3 &0.0668 &0.0664 &0.0634 &0.0683 &0.061 &0.067 &0.0646 &0.0533 &0.0651 &0.0597 &0.0592 &0.0619 &0.0585 &0.0608 &0.0654 &0.0588\\ \hline C1 &0.068 &0.0673 &0.0637 &0.0679 &0.06 &0.0653 &0.0635 &0.0625 &0.0552 &0.0617 &0.0605 &0.0628 &0.0574 &0.0606 &0.0651 &0.0586\\ \hline C2 &0.0672 &0.0659 &0.0643 &0.0671 &0.0613 &0.0644 &0.0624 &0.0628 &0.0673 &0.0509 &0.0622 &0.064 &0.0583 &0.06 &0.0642 &0.0577\\ \hline C3 &0.0665 &0.0661 &0.0633 &0.0676 &0.0618 &0.0652 &0.0642 &0.0627 &0.0668 &0.061 &0.0506 &0.0616 &0.0589 &0.0616 &0.0654 &0.0567\\ \hline C4 &0.0669 &0.0658 &0.0633 &0.0677 &0.0603 &0.0656 &0.0646 &0.064 &0.0653 &0.0614 &0.0609 &0.0527 &0.0584 &0.061 &0.0648 &0.0571\\ \hline D1 &0.0668 &0.0667 &0.0639 &0.068 &0.059 &0.0659 &0.064 &0.0631 &0.0647 &0.0589 &0.0599 &0.0633 &0.0492 &0.0623 &0.0648 &0.0593\\ \hline D2 &0.0672 &0.0674 &0.064 &0.0678 &0.0591 &0.0651 &0.0644 &0.0626 &0.0657 &0.0599 &0.0591 &0.064 &0.0591 &0.0512 &0.0646 &0.0588\\ \hline D3 &0.0669 &0.0665 &0.0632 &0.0698 &0.0604 &0.0651 &0.0635 &0.0621 &0.0657 &0.0612 &0.0592 &0.0634 &0.0583 &0.0614 &0.0543 &0.0588\\ \hline D4 &0.0669 &0.0645 &0.0638 &0.068 &0.0602 &0.0657 &0.0639 &0.0638 &0.0664 &0.0596 &0.0603 &0.0631 &0.0585 &0.061 &0.0652 &0.0491\\ \hline \end{array} $$
加权超矩阵求解:
求解就是每列归一化,加权超矩阵每列加起来的为1。$加权超矩阵 \mathcal{ \omega} $如下:
注意:当综合影响矩阵中存在某一列的值全部为0的时候需要特殊处理。 $$\omega=\begin{array}{c|c|c|c|c|c|c}{M_{16 \times16}} &A1 &A2 &A3 &A4 &A5 &B1 &B2 &B3 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &D4\\ \hline A1 &0.053 &0.0635 &0.0642 &0.063 &0.0633 &0.0644 &0.0627 &0.0633 &0.0639 &0.0632 &0.0636 &0.0625 &0.0608 &0.0619 &0.0633 &0.0637\\ \hline A2 &0.0632 &0.0528 &0.0629 &0.0625 &0.0627 &0.0627 &0.0626 &0.0631 &0.0638 &0.0634 &0.0645 &0.064 &0.0643 &0.0631 &0.0622 &0.0626\\ \hline A3 &0.062 &0.0629 &0.0528 &0.0631 &0.0641 &0.0623 &0.0622 &0.0635 &0.0639 &0.0643 &0.0641 &0.0641 &0.062 &0.0621 &0.0632 &0.0637\\ \hline A4 &0.0622 &0.0624 &0.0632 &0.0528 &0.0633 &0.0625 &0.0636 &0.0634 &0.062 &0.0627 &0.0633 &0.0633 &0.0654 &0.0642 &0.0627 &0.0642\\ \hline A5 &0.0645 &0.0632 &0.0647 &0.0646 &0.0532 &0.0626 &0.0623 &0.0627 &0.0636 &0.064 &0.0618 &0.0621 &0.0623 &0.0616 &0.0632 &0.063\\ \hline B1 &0.0626 &0.0621 &0.0627 &0.0625 &0.0632 &0.0529 &0.0638 &0.0643 &0.062 &0.0629 &0.064 &0.0628 &0.0646 &0.0636 &0.0627 &0.0641\\ \hline B2 &0.0629 &0.0632 &0.063 &0.0632 &0.0622 &0.0645 &0.0531 &0.0653 &0.0626 &0.063 &0.0619 &0.0618 &0.0628 &0.0636 &0.0632 &0.0639\\ \hline B3 &0.0631 &0.0634 &0.0627 &0.0634 &0.0638 &0.0646 &0.064 &0.0531 &0.0624 &0.0622 &0.062 &0.0621 &0.0632 &0.063 &0.0638 &0.0633\\ \hline C1 &0.0642 &0.0643 &0.063 &0.063 &0.0628 &0.063 &0.0629 &0.0622 &0.0529 &0.0642 &0.0633 &0.0631 &0.0619 &0.0629 &0.0634 &0.0631\\ \hline C2 &0.0635 &0.0629 &0.0636 &0.0623 &0.0641 &0.0621 &0.0618 &0.0625 &0.0645 &0.053 &0.0651 &0.0643 &0.063 &0.0622 &0.0626 &0.0621\\ \hline C3 &0.0628 &0.0631 &0.0625 &0.0628 &0.0647 &0.0629 &0.0636 &0.0624 &0.0641 &0.0636 &0.053 &0.0619 &0.0636 &0.0638 &0.0637 &0.061\\ \hline C4 &0.0631 &0.0629 &0.0626 &0.0629 &0.0631 &0.0633 &0.064 &0.0638 &0.0626 &0.064 &0.0637 &0.053 &0.063 &0.0633 &0.0632 &0.0615\\ \hline D1 &0.0631 &0.0637 &0.0632 &0.0631 &0.0617 &0.0636 &0.0634 &0.0628 &0.062 &0.0613 &0.0627 &0.0636 &0.0531 &0.0646 &0.0632 &0.0639\\ \hline D2 &0.0635 &0.0644 &0.0633 &0.0629 &0.0618 &0.0628 &0.0638 &0.0623 &0.063 &0.0624 &0.0619 &0.0643 &0.0638 &0.0531 &0.063 &0.0633\\ \hline D3 &0.0632 &0.0635 &0.0625 &0.0648 &0.0632 &0.0628 &0.0629 &0.0618 &0.063 &0.0638 &0.062 &0.0637 &0.0629 &0.0637 &0.053 &0.0634\\ \hline D4 &0.0631 &0.0616 &0.0631 &0.0631 &0.0629 &0.0633 &0.0633 &0.0635 &0.0637 &0.0621 &0.0631 &0.0634 &0.0632 &0.0633 &0.0635 &0.0529\\ \hline \end{array} $$
极限超矩阵求解:
权重的求解
归一化求子系统的权重
$$\omega =\begin{array}{c|c|c|c|c|c|c}{M_{4 \times1}} &权重\\ \hline A &0.3126\\ \hline B &0.1875\\ \hline C &0.25\\ \hline D &0.2499\\ \hline \end{array} $$$$\omega =\begin{array}{c|c|c|c|c|c|c}{M_{1 \times4}} &A &B &C &D\\ \hline 权重 &0.3126 &0.1875 &0.25 &0.2499\\ \hline \end{array} $$