规范化方法选择(参数选择)


原始矩阵(直接影响矩阵)为


$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline F1 &0 &12 &13 &5 &3 &7 &9 &6 &4 &10 &12 &11\\ \hline F2 &9 &0 &3 &6 &8 &13 &15 &5 &6 &13 &10 &10\\ \hline F3 &11 &4 &0 &4 &10 &8 &3 &4 &4 &7 &5 &13\\ \hline K1 &3 &10 &4 &0 &10 &10 &10 &20 &2 &10 &10 &10\\ \hline K2 &16 &10 &2 &6 &0 &3 &8 &9 &7 &18 &15 &10\\ \hline K3 &23 &5 &2 &6 &1 &0 &2 &9 &0 &12 &13 &8\\ \hline X1 &7 &10 &10 &14 &12 &8 &0 &9 &7 &8 &12 &1\\ \hline X2 &13 &6 &2 &10 &13 &11 &5 &0 &3 &2 &10 &8\\ \hline X3 &15 &12 &10 &10 &10 &10 &9 &8 &0 &5 &6 &2\\ \hline T1 &18 &14 &13 &10 &9 &7 &8 &12 &16 &0 &4 &5\\ \hline T2 &4 &3 &9 &8 &7 &9 &8 &7 &7 &6 &0 &11\\ \hline T3 &10 &8 &4 &9 &5 &9 &15 &11 &12 &9 &12 &0\\ \hline \end{array} $$

$$O-D=\begin{array}{c|c|c|c|c|c|c}{M_{12 \times2}} &-驱动 &依赖\\ \hline F1 &92 &129\\ \hline F2 &98 &94\\ \hline F3 &73 &72\\ \hline K1 &99 &88\\ \hline K2 &104 &88\\ \hline K3 &81 &95\\ \hline X1 &98 &92\\ \hline X2 &83 &100\\ \hline X3 &97 &68\\ \hline T1 &116 &100\\ \hline T2 &79 &109\\ \hline T3 &104 &89\\ \hline \end{array} $$

规范直接关系矩阵$ N $


  • $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline F1 &0 &0.103 &0.112 &0.043 &0.026 &0.06 &0.078 &0.052 &0.034 &0.086 &0.103 &0.095\\ \hline F2 &0.078 &0 &0.026 &0.052 &0.069 &0.112 &0.129 &0.043 &0.052 &0.112 &0.086 &0.086\\ \hline F3 &0.095 &0.034 &0 &0.034 &0.086 &0.069 &0.026 &0.034 &0.034 &0.06 &0.043 &0.112\\ \hline K1 &0.026 &0.086 &0.034 &0 &0.086 &0.086 &0.086 &0.172 &0.017 &0.086 &0.086 &0.086\\ \hline K2 &0.138 &0.086 &0.017 &0.052 &0 &0.026 &0.069 &0.078 &0.06 &0.155 &0.129 &0.086\\ \hline K3 &0.198 &0.043 &0.017 &0.052 &0.009 &0 &0.017 &0.078 &0 &0.103 &0.112 &0.069\\ \hline X1 &0.06 &0.086 &0.086 &0.121 &0.103 &0.069 &0 &0.078 &0.06 &0.069 &0.103 &0.009\\ \hline X2 &0.112 &0.052 &0.017 &0.086 &0.112 &0.095 &0.043 &0 &0.026 &0.017 &0.086 &0.069\\ \hline X3 &0.129 &0.103 &0.086 &0.086 &0.086 &0.086 &0.078 &0.069 &0 &0.043 &0.052 &0.017\\ \hline T1 &0.155 &0.121 &0.112 &0.086 &0.078 &0.06 &0.069 &0.103 &0.138 &0 &0.034 &0.043\\ \hline T2 &0.034 &0.026 &0.078 &0.069 &0.06 &0.078 &0.069 &0.06 &0.06 &0.052 &0 &0.095\\ \hline T3 &0.086 &0.069 &0.034 &0.078 &0.043 &0.078 &0.129 &0.095 &0.103 &0.078 &0.103 &0\\ \hline \end{array} $$$$N-D=\begin{array}{c|c|c|c|c|c|c}{M_{12 \times2}} &-驱动 &依赖\\ \hline F1 &0.7931 &1.1121\\ \hline F2 &0.8448 &0.8103\\ \hline F3 &0.6293 &0.6207\\ \hline K1 &0.8534 &0.7586\\ \hline K2 &0.8966 &0.7586\\ \hline K3 &0.6983 &0.819\\ \hline X1 &0.8448 &0.7931\\ \hline X2 &0.7155 &0.8621\\ \hline X3 &0.8362 &0.5862\\ \hline T1 &1 &0.8621\\ \hline T2 &0.681 &0.9397\\ \hline T3 &0.8966 &0.7672\\ \hline \end{array} $$

综合影响矩阵$ T$


  综合影响矩阵如下

$T=\mathcal{N}(I-\mathcal{N})^{-1}$

$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline F1 &0.369 &0.372 &0.328 &0.303 &0.283 &0.341 &0.349 &0.341 &0.244 &0.375 &0.417 &0.359\\ \hline F2 &0.478 &0.306 &0.272 &0.337 &0.341 &0.407 &0.417 &0.363 &0.277 &0.426 &0.434 &0.368\\ \hline F3 &0.395 &0.265 &0.183 &0.247 &0.286 &0.293 &0.254 &0.275 &0.206 &0.304 &0.311 &0.326\\ \hline K1 &0.431 &0.379 &0.268 &0.286 &0.361 &0.386 &0.377 &0.476 &0.242 &0.398 &0.434 &0.371\\ \hline K2 &0.551 &0.408 &0.285 &0.354 &0.297 &0.352 &0.388 &0.413 &0.305 &0.481 &0.491 &0.39\\ \hline K3 &0.505 &0.292 &0.225 &0.28 &0.233 &0.251 &0.265 &0.333 &0.189 &0.356 &0.392 &0.31\\ \hline X1 &0.45 &0.376 &0.315 &0.387 &0.371 &0.364 &0.291 &0.388 &0.273 &0.382 &0.44 &0.302\\ \hline X2 &0.44 &0.304 &0.219 &0.317 &0.332 &0.343 &0.294 &0.271 &0.211 &0.295 &0.383 &0.315\\ \hline X3 &0.507 &0.39 &0.314 &0.352 &0.349 &0.376 &0.36 &0.372 &0.212 &0.357 &0.393 &0.306\\ \hline T1 &0.605 &0.464 &0.385 &0.405 &0.395 &0.411 &0.409 &0.459 &0.38 &0.371 &0.439 &0.38\\ \hline T2 &0.359 &0.269 &0.265 &0.294 &0.281 &0.317 &0.303 &0.316 &0.237 &0.307 &0.283 &0.322\\ \hline T3 &0.497 &0.383 &0.29 &0.373 &0.335 &0.393 &0.429 &0.422 &0.329 &0.404 &0.463 &0.3\\ \hline \end{array} $$$$T-D=\begin{array}{c|c|c|c|c|c|c}{M_{12 \times2}} &-影响度 &被影响度\\ \hline F1 &4.0794 &5.5864\\ \hline F2 &4.4276 &4.2086\\ \hline F3 &3.3449 &3.3491\\ \hline K1 &4.4097 &3.9349\\ \hline K2 &4.7166 &3.8644\\ \hline K3 &3.6324 &4.2324\\ \hline X1 &4.3384 &4.1353\\ \hline X2 &3.7229 &4.429\\ \hline X3 &4.2866 &3.1051\\ \hline T1 &5.1046 &4.4561\\ \hline T2 &3.5507 &4.8807\\ \hline T3 &4.617 &4.0489\\ \hline \end{array} $$