规范化方法选择(参数选择):
原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline F1 &0 &12 &13 &5 &3 &7 &9 &6 &4 &10 &12 &11\\ \hline F2 &9 &0 &3 &6 &8 &13 &15 &5 &6 &13 &10 &10\\ \hline F3 &11 &4 &0 &4 &10 &8 &3 &4 &4 &7 &5 &13\\ \hline K1 &3 &10 &4 &0 &10 &10 &10 &20 &2 &10 &10 &10\\ \hline K2 &16 &10 &2 &6 &0 &3 &8 &9 &7 &18 &15 &10\\ \hline K3 &23 &5 &2 &6 &1 &0 &2 &9 &0 &12 &13 &8\\ \hline X1 &7 &10 &10 &14 &12 &8 &0 &9 &7 &8 &12 &1\\ \hline X2 &13 &6 &2 &10 &13 &11 &5 &0 &3 &2 &10 &8\\ \hline X3 &15 &12 &10 &10 &10 &10 &9 &8 &0 &5 &6 &2\\ \hline T1 &18 &14 &13 &10 &9 &7 &8 &12 &16 &0 &4 &5\\ \hline T2 &4 &3 &9 &8 &7 &9 &8 &7 &7 &6 &0 &11\\ \hline T3 &10 &8 &4 &9 &5 &9 &15 &11 &12 &9 &12 &0\\ \hline \end{array} $$
$$O-D=\begin{array}{c|c|c|c|c|c|c}{M_{12 \times2}} &-驱动 &依赖\\ \hline F1 &92 &129\\ \hline F2 &98 &94\\ \hline F3 &73 &72\\ \hline K1 &99 &88\\ \hline K2 &104 &88\\ \hline K3 &81 &95\\ \hline X1 &98 &92\\ \hline X2 &83 &100\\ \hline X3 &97 &68\\ \hline T1 &116 &100\\ \hline T2 &79 &109\\ \hline T3 &104 &89\\ \hline \end{array} $$规范直接关系矩阵$ N $
- $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline F1 &0 &0.069 &0.075 &0.029 &0.017 &0.04 &0.052 &0.035 &0.023 &0.058 &0.069 &0.063\\ \hline F2 &0.052 &0 &0.017 &0.035 &0.046 &0.075 &0.086 &0.029 &0.035 &0.075 &0.058 &0.058\\ \hline F3 &0.063 &0.023 &0 &0.023 &0.058 &0.046 &0.017 &0.023 &0.023 &0.04 &0.029 &0.075\\ \hline K1 &0.017 &0.058 &0.023 &0 &0.058 &0.058 &0.058 &0.115 &0.012 &0.058 &0.058 &0.058\\ \hline K2 &0.092 &0.058 &0.012 &0.035 &0 &0.017 &0.046 &0.052 &0.04 &0.104 &0.086 &0.058\\ \hline K3 &0.133 &0.029 &0.012 &0.035 &0.006 &0 &0.012 &0.052 &0 &0.069 &0.075 &0.046\\ \hline X1 &0.04 &0.058 &0.058 &0.081 &0.069 &0.046 &0 &0.052 &0.04 &0.046 &0.069 &0.006\\ \hline X2 &0.075 &0.035 &0.012 &0.058 &0.075 &0.063 &0.029 &0 &0.017 &0.012 &0.058 &0.046\\ \hline X3 &0.086 &0.069 &0.058 &0.058 &0.058 &0.058 &0.052 &0.046 &0 &0.029 &0.035 &0.012\\ \hline T1 &0.104 &0.081 &0.075 &0.058 &0.052 &0.04 &0.046 &0.069 &0.092 &0 &0.023 &0.029\\ \hline T2 &0.023 &0.017 &0.052 &0.046 &0.04 &0.052 &0.046 &0.04 &0.04 &0.035 &0 &0.063\\ \hline T3 &0.058 &0.046 &0.023 &0.052 &0.029 &0.052 &0.086 &0.063 &0.069 &0.052 &0.069 &0\\ \hline \end{array} $$$$N-D=\begin{array}{c|c|c|c|c|c|c}{M_{12 \times2}} &-驱动 &依赖\\ \hline F1 &0.5303 &0.7436\\ \hline F2 &0.5649 &0.5418\\ \hline F3 &0.4208 &0.415\\ \hline K1 &0.5707 &0.5073\\ \hline K2 &0.5995 &0.5072\\ \hline K3 &0.4669 &0.5476\\ \hline X1 &0.5649 &0.5303\\ \hline X2 &0.4784 &0.5764\\ \hline X3 &0.5591 &0.392\\ \hline T1 &0.6686 &0.5764\\ \hline T2 &0.4554 &0.6283\\ \hline T3 &0.5995 &0.513\\ \hline \end{array} $$
综合影响矩阵$ T$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline F1 &0.07 &0.117 &0.114 &0.078 &0.067 &0.094 &0.103 &0.089 &0.064 &0.111 &0.126 &0.112\\ \hline F2 &0.128 &0.059 &0.065 &0.089 &0.096 &0.128 &0.138 &0.09 &0.078 &0.133 &0.123 &0.108\\ \hline F3 &0.12 &0.067 &0.034 &0.063 &0.093 &0.087 &0.061 &0.069 &0.056 &0.087 &0.08 &0.114\\ \hline K1 &0.096 &0.111 &0.065 &0.056 &0.11 &0.114 &0.111 &0.17 &0.055 &0.115 &0.123 &0.11\\ \hline K2 &0.167 &0.119 &0.065 &0.092 &0.057 &0.08 &0.107 &0.114 &0.088 &0.162 &0.152 &0.113\\ \hline K3 &0.185 &0.077 &0.054 &0.077 &0.048 &0.048 &0.06 &0.099 &0.037 &0.115 &0.126 &0.092\\ \hline X1 &0.114 &0.111 &0.099 &0.129 &0.119 &0.102 &0.055 &0.111 &0.079 &0.106 &0.131 &0.063\\ \hline X2 &0.135 &0.082 &0.049 &0.099 &0.113 &0.108 &0.077 &0.053 &0.051 &0.067 &0.115 &0.093\\ \hline X3 &0.156 &0.122 &0.099 &0.106 &0.106 &0.112 &0.104 &0.103 &0.039 &0.09 &0.1 &0.068\\ \hline T1 &0.187 &0.145 &0.125 &0.117 &0.112 &0.107 &0.11 &0.134 &0.134 &0.071 &0.101 &0.093\\ \hline T2 &0.086 &0.063 &0.085 &0.088 &0.082 &0.096 &0.089 &0.089 &0.073 &0.082 &0.054 &0.104\\ \hline T3 &0.135 &0.105 &0.072 &0.108 &0.085 &0.111 &0.141 &0.125 &0.11 &0.112 &0.136 &0.056\\ \hline \end{array} $$$$T-D=\begin{array}{c|c|c|c|c|c|c}{M_{12 \times2}} &-影响度 &被影响度\\ \hline F1 &1.1458 &1.5813\\ \hline F2 &1.2369 &1.1791\\ \hline F3 &0.9299 &0.927\\ \hline K1 &1.2368 &1.1022\\ \hline K2 &1.3162 &1.0884\\ \hline K3 &1.0173 &1.1869\\ \hline X1 &1.2189 &1.1567\\ \hline X2 &1.0418 &1.2446\\ \hline X3 &1.2052 &0.8639\\ \hline T1 &1.4374 &1.2503\\ \hline T2 &0.9932 &1.3675\\ \hline T3 &1.297 &1.1285\\ \hline \end{array} $$