规范化方法选择(参数选择)


原始矩阵(直接影响矩阵)为


$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline F1 &0 &12 &13 &5 &3 &7 &9 &6 &4 &10 &12 &11\\ \hline F2 &9 &0 &3 &6 &8 &13 &15 &5 &6 &13 &10 &10\\ \hline F3 &11 &4 &0 &4 &10 &8 &3 &4 &4 &7 &5 &13\\ \hline K1 &3 &10 &4 &0 &10 &10 &10 &20 &2 &10 &10 &10\\ \hline K2 &16 &10 &2 &6 &0 &3 &8 &9 &7 &18 &15 &10\\ \hline K3 &23 &5 &2 &6 &1 &0 &2 &9 &0 &12 &13 &8\\ \hline X1 &7 &10 &10 &14 &12 &8 &0 &9 &7 &8 &12 &1\\ \hline X2 &13 &6 &2 &10 &13 &11 &5 &0 &3 &2 &10 &8\\ \hline X3 &15 &12 &10 &10 &10 &10 &9 &8 &0 &5 &6 &2\\ \hline T1 &18 &14 &13 &10 &9 &7 &8 &12 &16 &0 &4 &5\\ \hline T2 &4 &3 &9 &8 &7 &9 &8 &7 &7 &6 &0 &11\\ \hline T3 &10 &8 &4 &9 &5 &9 &15 &11 &12 &9 &12 &0\\ \hline \end{array} $$

$$O-D=\begin{array}{c|c|c|c|c|c|c}{M_{12 \times2}} &-驱动 &依赖\\ \hline F1 &92 &129\\ \hline F2 &98 &94\\ \hline F3 &73 &72\\ \hline K1 &99 &88\\ \hline K2 &104 &88\\ \hline K3 &81 &95\\ \hline X1 &98 &92\\ \hline X2 &83 &100\\ \hline X3 &97 &68\\ \hline T1 &116 &100\\ \hline T2 &79 &109\\ \hline T3 &104 &89\\ \hline \end{array} $$

规范直接关系矩阵$ N $


  • $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline F1 &0 &0.076 &0.082 &0.032 &0.019 &0.044 &0.057 &0.038 &0.025 &0.063 &0.076 &0.069\\ \hline F2 &0.057 &0 &0.019 &0.038 &0.05 &0.082 &0.095 &0.032 &0.038 &0.082 &0.063 &0.063\\ \hline F3 &0.069 &0.025 &0 &0.025 &0.063 &0.05 &0.019 &0.025 &0.025 &0.044 &0.032 &0.082\\ \hline K1 &0.019 &0.063 &0.025 &0 &0.063 &0.063 &0.063 &0.126 &0.013 &0.063 &0.063 &0.063\\ \hline K2 &0.101 &0.063 &0.013 &0.038 &0 &0.019 &0.05 &0.057 &0.044 &0.114 &0.095 &0.063\\ \hline K3 &0.145 &0.032 &0.013 &0.038 &0.006 &0 &0.013 &0.057 &0 &0.076 &0.082 &0.05\\ \hline X1 &0.044 &0.063 &0.063 &0.088 &0.076 &0.05 &0 &0.057 &0.044 &0.05 &0.076 &0.006\\ \hline X2 &0.082 &0.038 &0.013 &0.063 &0.082 &0.069 &0.032 &0 &0.019 &0.013 &0.063 &0.05\\ \hline X3 &0.095 &0.076 &0.063 &0.063 &0.063 &0.063 &0.057 &0.05 &0 &0.032 &0.038 &0.013\\ \hline T1 &0.114 &0.088 &0.082 &0.063 &0.057 &0.044 &0.05 &0.076 &0.101 &0 &0.025 &0.032\\ \hline T2 &0.025 &0.019 &0.057 &0.05 &0.044 &0.057 &0.05 &0.044 &0.044 &0.038 &0 &0.069\\ \hline T3 &0.063 &0.05 &0.025 &0.057 &0.032 &0.057 &0.095 &0.069 &0.076 &0.057 &0.076 &0\\ \hline \end{array} $$$$N-D=\begin{array}{c|c|c|c|c|c|c}{M_{12 \times2}} &-驱动 &依赖\\ \hline F1 &0.5806 &0.8142\\ \hline F2 &0.6185 &0.5933\\ \hline F3 &0.4607 &0.4544\\ \hline K1 &0.6248 &0.5554\\ \hline K2 &0.6564 &0.5554\\ \hline K3 &0.5112 &0.5996\\ \hline X1 &0.6185 &0.5806\\ \hline X2 &0.5238 &0.6311\\ \hline X3 &0.6122 &0.4292\\ \hline T1 &0.7321 &0.6311\\ \hline T2 &0.4986 &0.6879\\ \hline T3 &0.6564 &0.5617\\ \hline \end{array} $$

综合影响矩阵$ T$


  综合影响矩阵如下

$T=\mathcal{N}(I-\mathcal{N})^{-1}$

$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline F1 &0.095 &0.141 &0.135 &0.098 &0.086 &0.116 &0.126 &0.111 &0.08 &0.135 &0.153 &0.136\\ \hline F2 &0.16 &0.079 &0.083 &0.111 &0.119 &0.155 &0.165 &0.114 &0.096 &0.161 &0.151 &0.132\\ \hline F3 &0.146 &0.084 &0.047 &0.079 &0.111 &0.106 &0.078 &0.087 &0.07 &0.107 &0.1 &0.135\\ \hline K1 &0.125 &0.136 &0.083 &0.075 &0.133 &0.139 &0.136 &0.2 &0.071 &0.141 &0.152 &0.134\\ \hline K2 &0.203 &0.145 &0.084 &0.115 &0.076 &0.103 &0.132 &0.141 &0.108 &0.192 &0.183 &0.139\\ \hline K3 &0.217 &0.096 &0.069 &0.095 &0.063 &0.065 &0.077 &0.121 &0.05 &0.138 &0.151 &0.113\\ \hline X1 &0.143 &0.136 &0.119 &0.153 &0.143 &0.125 &0.074 &0.136 &0.097 &0.131 &0.16 &0.083\\ \hline X2 &0.164 &0.102 &0.063 &0.12 &0.134 &0.13 &0.096 &0.07 &0.065 &0.086 &0.14 &0.113\\ \hline X3 &0.189 &0.147 &0.12 &0.129 &0.129 &0.136 &0.128 &0.127 &0.052 &0.113 &0.126 &0.088\\ \hline T1 &0.226 &0.175 &0.15 &0.143 &0.138 &0.134 &0.137 &0.164 &0.159 &0.096 &0.129 &0.118\\ \hline T2 &0.11 &0.081 &0.102 &0.107 &0.1 &0.117 &0.109 &0.11 &0.088 &0.102 &0.073 &0.125\\ \hline T3 &0.167 &0.13 &0.091 &0.133 &0.107 &0.137 &0.169 &0.152 &0.131 &0.138 &0.166 &0.076\\ \hline \end{array} $$$$T-D=\begin{array}{c|c|c|c|c|c|c}{M_{12 \times2}} &-影响度 &被影响度\\ \hline F1 &1.411 &1.9443\\ \hline F2 &1.5249 &1.4528\\ \hline F3 &1.1475 &1.1449\\ \hline K1 &1.5235 &1.358\\ \hline K2 &1.6229 &1.3396\\ \hline K3 &1.2535 &1.462\\ \hline X1 &1.5009 &1.4256\\ \hline X2 &1.2839 &1.5325\\ \hline X3 &1.4838 &1.0659\\ \hline T1 &1.7692 &1.5401\\ \hline T2 &1.224 &1.6848\\ \hline T3 &1.5971 &1.3918\\ \hline \end{array} $$