规范化方法选择(参数选择):
原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline F1 &0 &12 &13 &5 &3 &7 &9 &6 &4 &10 &12 &11\\ \hline F2 &9 &0 &3 &6 &8 &13 &15 &5 &6 &13 &10 &10\\ \hline F3 &11 &4 &0 &4 &10 &8 &3 &4 &4 &7 &5 &13\\ \hline K1 &3 &10 &4 &0 &10 &10 &10 &20 &2 &10 &10 &10\\ \hline K2 &16 &10 &2 &6 &0 &3 &8 &9 &7 &18 &15 &10\\ \hline K3 &23 &5 &2 &6 &1 &0 &2 &9 &0 &12 &13 &8\\ \hline X1 &7 &10 &10 &14 &12 &8 &0 &9 &7 &8 &12 &1\\ \hline X2 &13 &6 &2 &10 &13 &11 &5 &0 &3 &2 &10 &8\\ \hline X3 &15 &12 &10 &10 &10 &10 &9 &8 &0 &5 &6 &2\\ \hline T1 &18 &14 &13 &10 &9 &7 &8 &12 &16 &0 &4 &5\\ \hline T2 &4 &3 &9 &8 &7 &9 &8 &7 &7 &6 &0 &11\\ \hline T3 &10 &8 &4 &9 &5 &9 &15 &11 &12 &9 &12 &0\\ \hline \end{array} $$
$$O-D=\begin{array}{c|c|c|c|c|c|c}{M_{12 \times2}} &-驱动 &依赖\\ \hline F1 &92 &129\\ \hline F2 &98 &94\\ \hline F3 &73 &72\\ \hline K1 &99 &88\\ \hline K2 &104 &88\\ \hline K3 &81 &95\\ \hline X1 &98 &92\\ \hline X2 &83 &100\\ \hline X3 &97 &68\\ \hline T1 &116 &100\\ \hline T2 &79 &109\\ \hline T3 &104 &89\\ \hline \end{array} $$规范直接关系矩阵$ N $
- $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline F1 &0 &0.093 &0.101 &0.039 &0.023 &0.054 &0.07 &0.047 &0.031 &0.078 &0.093 &0.085\\ \hline F2 &0.07 &0 &0.023 &0.047 &0.062 &0.101 &0.116 &0.039 &0.047 &0.101 &0.078 &0.078\\ \hline F3 &0.085 &0.031 &0 &0.031 &0.078 &0.062 &0.023 &0.031 &0.031 &0.054 &0.039 &0.101\\ \hline K1 &0.023 &0.078 &0.031 &0 &0.078 &0.078 &0.078 &0.155 &0.016 &0.078 &0.078 &0.078\\ \hline K2 &0.124 &0.078 &0.016 &0.047 &0 &0.023 &0.062 &0.07 &0.054 &0.14 &0.116 &0.078\\ \hline K3 &0.178 &0.039 &0.016 &0.047 &0.008 &0 &0.016 &0.07 &0 &0.093 &0.101 &0.062\\ \hline X1 &0.054 &0.078 &0.078 &0.109 &0.093 &0.062 &0 &0.07 &0.054 &0.062 &0.093 &0.008\\ \hline X2 &0.101 &0.047 &0.016 &0.078 &0.101 &0.085 &0.039 &0 &0.023 &0.016 &0.078 &0.062\\ \hline X3 &0.116 &0.093 &0.078 &0.078 &0.078 &0.078 &0.07 &0.062 &0 &0.039 &0.047 &0.016\\ \hline T1 &0.14 &0.109 &0.101 &0.078 &0.07 &0.054 &0.062 &0.093 &0.124 &0 &0.031 &0.039\\ \hline T2 &0.031 &0.023 &0.07 &0.062 &0.054 &0.07 &0.062 &0.054 &0.054 &0.047 &0 &0.085\\ \hline T3 &0.078 &0.062 &0.031 &0.07 &0.039 &0.07 &0.116 &0.085 &0.093 &0.07 &0.093 &0\\ \hline \end{array} $$$$N-D=\begin{array}{c|c|c|c|c|c|c}{M_{12 \times2}} &-驱动 &依赖\\ \hline F1 &0.7132 &1\\ \hline F2 &0.7597 &0.7287\\ \hline F3 &0.5659 &0.5581\\ \hline K1 &0.7674 &0.6822\\ \hline K2 &0.8062 &0.6822\\ \hline K3 &0.6279 &0.7364\\ \hline X1 &0.7597 &0.7132\\ \hline X2 &0.6434 &0.7752\\ \hline X3 &0.7519 &0.5271\\ \hline T1 &0.8992 &0.7752\\ \hline T2 &0.6124 &0.845\\ \hline T3 &0.8062 &0.6899\\ \hline \end{array} $$
综合影响矩阵$ T$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &F1 &F2 &F3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline F1 &0.211 &0.244 &0.222 &0.187 &0.171 &0.214 &0.224 &0.211 &0.151 &0.241 &0.27 &0.235\\ \hline F2 &0.299 &0.176 &0.165 &0.21 &0.216 &0.267 &0.278 &0.222 &0.176 &0.279 &0.275 &0.236\\ \hline F3 &0.257 &0.163 &0.105 &0.151 &0.189 &0.188 &0.154 &0.168 &0.13 &0.193 &0.192 &0.221\\ \hline K1 &0.256 &0.243 &0.162 &0.165 &0.234 &0.248 &0.242 &0.325 &0.145 &0.254 &0.276 &0.239\\ \hline K2 &0.357 &0.261 &0.171 &0.22 &0.17 &0.21 &0.245 &0.26 &0.195 &0.322 &0.32 &0.249\\ \hline K3 &0.348 &0.181 &0.137 &0.176 &0.135 &0.144 &0.158 &0.215 &0.109 &0.235 &0.259 &0.2\\ \hline X1 &0.276 &0.242 &0.206 &0.258 &0.245 &0.23 &0.166 &0.247 &0.174 &0.241 &0.284 &0.177\\ \hline X2 &0.286 &0.19 &0.13 &0.207 &0.223 &0.225 &0.182 &0.156 &0.128 &0.176 &0.248 &0.203\\ \hline X3 &0.33 &0.255 &0.206 &0.227 &0.226 &0.242 &0.23 &0.234 &0.119 &0.219 &0.242 &0.182\\ \hline T1 &0.395 &0.304 &0.255 &0.258 &0.251 &0.255 &0.256 &0.294 &0.259 &0.213 &0.263 &0.232\\ \hline T2 &0.217 &0.162 &0.175 &0.19 &0.18 &0.205 &0.194 &0.2 &0.154 &0.192 &0.162 &0.213\\ \hline T3 &0.311 &0.241 &0.177 &0.239 &0.207 &0.25 &0.285 &0.271 &0.22 &0.254 &0.297 &0.171\\ \hline \end{array} $$$$T-D=\begin{array}{c|c|c|c|c|c|c}{M_{12 \times2}} &-影响度 &被影响度\\ \hline F1 &2.5823 &3.5445\\ \hline F2 &2.7984 &2.6622\\ \hline F3 &2.1109 &2.1109\\ \hline K1 &2.7902 &2.4888\\ \hline K2 &2.98 &2.4481\\ \hline K3 &2.2975 &2.6778\\ \hline X1 &2.7464 &2.6145\\ \hline X2 &2.354 &2.804\\ \hline X3 &2.7142 &1.96\\ \hline T1 &3.2337 &2.82\\ \hline T2 &2.2449 &3.0874\\ \hline T3 &2.9228 &2.5572\\ \hline \end{array} $$