原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{9 \times9}} &A &B &C &D &E &F &G &H &I\\ \hline A &0 &3 &1 &5 &8 &8 &3 &5 &0\\ \hline B &5 &0 &6 &4 &3 &2 &5 &8 &6\\ \hline C &4 &6 &0 &7 &1 &2 &9 &3 &1\\ \hline D &3 &6 &9 &0 &8 &9 &11 &5 &3\\ \hline E &8 &9 &2 &11 &0 &10 &9 &2 &5\\ \hline F &5 &8 &0 &10 &8 &0 &9 &4 &6\\ \hline G &0 &11 &6 &5 &9 &10 &0 &9 &0\\ \hline H &9 &10 &5 &3 &5 &3 &7 &0 &6\\ \hline I &5 &7 &1 &8 &10 &6 &5 &3 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$
- $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{9 \times9}} &A &B &C &D &E &F &G &H &I\\ \hline A &0 &0.054 &0.018 &0.089 &0.143 &0.143 &0.054 &0.089 &0\\ \hline B &0.089 &0 &0.107 &0.071 &0.054 &0.036 &0.089 &0.143 &0.107\\ \hline C &0.071 &0.107 &0 &0.125 &0.018 &0.036 &0.161 &0.054 &0.018\\ \hline D &0.054 &0.107 &0.161 &0 &0.143 &0.161 &0.196 &0.089 &0.054\\ \hline E &0.143 &0.161 &0.036 &0.196 &0 &0.179 &0.161 &0.036 &0.089\\ \hline F &0.089 &0.143 &0 &0.179 &0.143 &0 &0.161 &0.071 &0.107\\ \hline G &0 &0.196 &0.107 &0.089 &0.161 &0.179 &0 &0.161 &0\\ \hline H &0.161 &0.179 &0.089 &0.054 &0.089 &0.054 &0.125 &0 &0.107\\ \hline I &0.089 &0.125 &0.018 &0.143 &0.179 &0.107 &0.089 &0.054 &0\\ \hline \end{array} $$
综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{9 \times9}} &A &B &C &D &E &F &G &H &I\\ \hline A &0.284 &0.487 &0.256 &0.464 &0.502 &0.503 &0.474 &0.381 &0.221\\ \hline B &0.387 &0.469 &0.359 &0.468 &0.452 &0.43 &0.529 &0.455 &0.324\\ \hline C &0.32 &0.507 &0.239 &0.458 &0.37 &0.384 &0.535 &0.346 &0.212\\ \hline D &0.469 &0.76 &0.509 &0.573 &0.686 &0.7 &0.807 &0.542 &0.369\\ \hline E &0.56 &0.822 &0.418 &0.767 &0.597 &0.748 &0.8 &0.519 &0.415\\ \hline F &0.484 &0.758 &0.36 &0.703 &0.676 &0.547 &0.747 &0.51 &0.406\\ \hline G &0.41 &0.793 &0.443 &0.616 &0.657 &0.669 &0.598 &0.574 &0.318\\ \hline H &0.505 &0.713 &0.391 &0.534 &0.562 &0.526 &0.641 &0.396 &0.368\\ \hline I &0.451 &0.682 &0.336 &0.629 &0.652 &0.593 &0.633 &0.448 &0.282\\ \hline \end{array} $$