流程图


输入

直接影响矩阵

参数设置

第一、归一化方法的设置

第二、截距值的获得

输出结果

第一、一组成对的对抗层级拓扑图

第二、带综合影响值的MR的直角坐标几何分布图

选择规范化方式

选择截距方式

原始矩阵(直接影响矩阵)为


$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{24 \times24}} &B11 &B12 &B13 &B14 &B15 &B21 &B22 &B23 &B24 &B25 &B31 &B32 &B33 &B34 &B35 &B41 &B42 &B43 &B51 &B52 &B53 &B61 &B62 &B63\\ \hline B11 &0 &0 &9 &18 &11 &9 &21 &18 &12 &12 &21 &27 &12 &15 &3 &15 &12 &9 &0 &12 &9 &13 &6 &21\\ \hline B12 &33 &0 &15 &18 &24 &18 &18 &18 &15 &12 &15 &30 &12 &18 &3 &9 &9 &6 &3 &18 &6 &13 &9 &21\\ \hline B13 &24 &18 &0 &21 &9 &12 &12 &15 &9 &9 &3 &9 &9 &18 &0 &3 &9 &3 &0 &3 &18 &14 &9 &24\\ \hline B14 &24 &15 &18 &0 &12 &9 &12 &15 &18 &9 &9 &12 &15 &25 &3 &18 &0 &12 &3 &12 &18 &17 &9 &18\\ \hline B15 &16 &0 &12 &9 &0 &21 &21 &18 &9 &15 &12 &15 &15 &25 &12 &15 &12 &9 &0 &6 &9 &20 &6 &9\\ \hline B21 &3 &3 &9 &0 &9 &0 &21 &17 &21 &21 &12 &21 &12 &18 &15 &0 &0 &0 &0 &0 &6 &13 &3 &15\\ \hline B22 &6 &0 &0 &3 &9 &15 &0 &33 &36 &24 &15 &12 &6 &18 &15 &9 &9 &12 &0 &0 &0 &18 &0 &12\\ \hline B23 &6 &3 &9 &12 &12 &18 &24 &0 &30 &18 &9 &15 &3 &9 &12 &12 &9 &15 &6 &6 &12 &14 &9 &15\\ \hline B24 &0 &0 &0 &0 &14 &18 &36 &30 &0 &24 &6 &15 &6 &21 &18 &15 &12 &15 &9 &6 &9 &14 &6 &12\\ \hline B25 &0 &0 &6 &3 &3 &12 &24 &15 &21 &0 &9 &12 &12 &12 &6 &12 &18 &15 &0 &3 &0 &24 &0 &3\\ \hline B31 &15 &9 &9 &18 &15 &13 &27 &20 &23 &12 &0 &11 &18 &11 &27 &12 &6 &9 &6 &3 &18 &30 &12 &15\\ \hline B32 &18 &12 &21 &13 &19 &15 &27 &24 &27 &21 &11 &0 &12 &11 &15 &21 &15 &9 &12 &9 &23 &33 &24 &12\\ \hline B33 &0 &3 &0 &9 &9 &12 &12 &3 &9 &24 &15 &21 &0 &18 &18 &0 &0 &0 &15 &12 &11 &30 &15 &3\\ \hline B34 &12 &9 &15 &18 &12 &12 &21 &9 &24 &21 &18 &27 &21 &0 &9 &3 &3 &3 &9 &9 &18 &30 &15 &9\\ \hline B35 &12 &6 &9 &18 &24 &27 &33 &33 &36 &24 &24 &24 &6 &12 &0 &6 &3 &0 &0 &0 &9 &27 &9 &6\\ \hline B41 &24 &21 &9 &12 &24 &6 &15 &9 &6 &9 &12 &15 &0 &6 &18 &0 &3 &0 &0 &0 &0 &18 &9 &12\\ \hline B42 &21 &18 &23 &23 &15 &3 &6 &3 &3 &3 &3 &6 &0 &9 &0 &3 &0 &0 &0 &6 &0 &15 &15 &9\\ \hline B43 &21 &18 &21 &21 &25 &9 &6 &6 &18 &9 &3 &9 &0 &6 &0 &6 &3 &0 &0 &6 &0 &21 &15 &18\\ \hline B51 &9 &12 &12 &15 &9 &24 &27 &12 &30 &18 &24 &21 &21 &21 &12 &27 &25 &29 &0 &30 &13 &36 &27 &21\\ \hline B52 &9 &15 &18 &21 &10 &15 &21 &21 &24 &13 &21 &25 &23 &25 &21 &18 &24 &18 &21 &0 &21 &30 &21 &21\\ \hline B53 &14 &13 &10 &15 &17 &7 &14 &11 &19 &18 &31 &35 &28 &29 &19 &21 &24 &15 &15 &12 &0 &33 &21 &6\\ \hline B61 &14 &24 &21 &21 &27 &24 &27 &27 &33 &24 &27 &30 &24 &21 &21 &24 &25 &24 &0 &0 &0 &0 &27 &6\\ \hline B62 &12 &9 &18 &12 &9 &9 &18 &12 &24 &24 &12 &27 &12 &15 &12 &21 &24 &18 &27 &24 &21 &30 &0 &9\\ \hline B63 &24 &21 &24 &21 &18 &12 &15 &12 &21 &21 &15 &15 &12 &12 &6 &12 &9 &15 &18 &24 &9 &15 &9 &0\\ \hline \end{array} $$

规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$


$$N=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{24 \times24}} &B11 &B12 &B13 &B14 &B15 &B21 &B22 &B23 &B24 &B25 &B31 &B32 &B33 &B34 &B35 &B41 &B42 &B43 &B51 &B52 &B53 &B61 &B62 &B63\\ \hline B11 &0 &0 &0.018 &0.035 &0.022 &0.018 &0.041 &0.035 &0.024 &0.024 &0.041 &0.053 &0.024 &0.03 &0.006 &0.03 &0.024 &0.018 &0 &0.024 &0.018 &0.026 &0.012 &0.041\\ \hline B12 &0.065 &0 &0.03 &0.035 &0.047 &0.035 &0.035 &0.035 &0.03 &0.024 &0.03 &0.059 &0.024 &0.035 &0.006 &0.018 &0.018 &0.012 &0.006 &0.035 &0.012 &0.026 &0.018 &0.041\\ \hline B13 &0.047 &0.035 &0 &0.041 &0.018 &0.024 &0.024 &0.03 &0.018 &0.018 &0.006 &0.018 &0.018 &0.035 &0 &0.006 &0.018 &0.006 &0 &0.006 &0.035 &0.028 &0.018 &0.047\\ \hline B14 &0.047 &0.03 &0.035 &0 &0.024 &0.018 &0.024 &0.03 &0.035 &0.018 &0.018 &0.024 &0.03 &0.049 &0.006 &0.035 &0 &0.024 &0.006 &0.024 &0.035 &0.033 &0.018 &0.035\\ \hline B15 &0.031 &0 &0.024 &0.018 &0 &0.041 &0.041 &0.035 &0.018 &0.03 &0.024 &0.03 &0.03 &0.049 &0.024 &0.03 &0.024 &0.018 &0 &0.012 &0.018 &0.039 &0.012 &0.018\\ \hline B21 &0.006 &0.006 &0.018 &0 &0.018 &0 &0.041 &0.033 &0.041 &0.041 &0.024 &0.041 &0.024 &0.035 &0.03 &0 &0 &0 &0 &0 &0.012 &0.026 &0.006 &0.03\\ \hline B22 &0.012 &0 &0 &0.006 &0.018 &0.03 &0 &0.065 &0.071 &0.047 &0.03 &0.024 &0.012 &0.035 &0.03 &0.018 &0.018 &0.024 &0 &0 &0 &0.035 &0 &0.024\\ \hline B23 &0.012 &0.006 &0.018 &0.024 &0.024 &0.035 &0.047 &0 &0.059 &0.035 &0.018 &0.03 &0.006 &0.018 &0.024 &0.024 &0.018 &0.03 &0.012 &0.012 &0.024 &0.028 &0.018 &0.03\\ \hline B24 &0 &0 &0 &0 &0.028 &0.035 &0.071 &0.059 &0 &0.047 &0.012 &0.03 &0.012 &0.041 &0.035 &0.03 &0.024 &0.03 &0.018 &0.012 &0.018 &0.028 &0.012 &0.024\\ \hline B25 &0 &0 &0.012 &0.006 &0.006 &0.024 &0.047 &0.03 &0.041 &0 &0.018 &0.024 &0.024 &0.024 &0.012 &0.024 &0.035 &0.03 &0 &0.006 &0 &0.047 &0 &0.006\\ \hline B31 &0.03 &0.018 &0.018 &0.035 &0.03 &0.026 &0.053 &0.039 &0.045 &0.024 &0 &0.022 &0.035 &0.022 &0.053 &0.024 &0.012 &0.018 &0.012 &0.006 &0.035 &0.059 &0.024 &0.03\\ \hline B32 &0.035 &0.024 &0.041 &0.026 &0.037 &0.03 &0.053 &0.047 &0.053 &0.041 &0.022 &0 &0.024 &0.022 &0.03 &0.041 &0.03 &0.018 &0.024 &0.018 &0.045 &0.065 &0.047 &0.024\\ \hline B33 &0 &0.006 &0 &0.018 &0.018 &0.024 &0.024 &0.006 &0.018 &0.047 &0.03 &0.041 &0 &0.035 &0.035 &0 &0 &0 &0.03 &0.024 &0.022 &0.059 &0.03 &0.006\\ \hline B34 &0.024 &0.018 &0.03 &0.035 &0.024 &0.024 &0.041 &0.018 &0.047 &0.041 &0.035 &0.053 &0.041 &0 &0.018 &0.006 &0.006 &0.006 &0.018 &0.018 &0.035 &0.059 &0.03 &0.018\\ \hline B35 &0.024 &0.012 &0.018 &0.035 &0.047 &0.053 &0.065 &0.065 &0.071 &0.047 &0.047 &0.047 &0.012 &0.024 &0 &0.012 &0.006 &0 &0 &0 &0.018 &0.053 &0.018 &0.012\\ \hline B41 &0.047 &0.041 &0.018 &0.024 &0.047 &0.012 &0.03 &0.018 &0.012 &0.018 &0.024 &0.03 &0 &0.012 &0.035 &0 &0.006 &0 &0 &0 &0 &0.035 &0.018 &0.024\\ \hline B42 &0.041 &0.035 &0.045 &0.045 &0.03 &0.006 &0.012 &0.006 &0.006 &0.006 &0.006 &0.012 &0 &0.018 &0 &0.006 &0 &0 &0 &0.012 &0 &0.03 &0.03 &0.018\\ \hline B43 &0.041 &0.035 &0.041 &0.041 &0.049 &0.018 &0.012 &0.012 &0.035 &0.018 &0.006 &0.018 &0 &0.012 &0 &0.012 &0.006 &0 &0 &0.012 &0 &0.041 &0.03 &0.035\\ \hline B51 &0.018 &0.024 &0.024 &0.03 &0.018 &0.047 &0.053 &0.024 &0.059 &0.035 &0.047 &0.041 &0.041 &0.041 &0.024 &0.053 &0.049 &0.057 &0 &0.059 &0.026 &0.071 &0.053 &0.041\\ \hline B52 &0.018 &0.03 &0.035 &0.041 &0.02 &0.03 &0.041 &0.041 &0.047 &0.026 &0.041 &0.049 &0.045 &0.049 &0.041 &0.035 &0.047 &0.035 &0.041 &0 &0.041 &0.059 &0.041 &0.041\\ \hline B53 &0.028 &0.026 &0.02 &0.03 &0.033 &0.014 &0.028 &0.022 &0.037 &0.035 &0.061 &0.069 &0.055 &0.057 &0.037 &0.041 &0.047 &0.03 &0.03 &0.024 &0 &0.065 &0.041 &0.012\\ \hline B61 &0.028 &0.047 &0.041 &0.041 &0.053 &0.047 &0.053 &0.053 &0.065 &0.047 &0.053 &0.059 &0.047 &0.041 &0.041 &0.047 &0.049 &0.047 &0 &0 &0 &0 &0.053 &0.012\\ \hline B62 &0.024 &0.018 &0.035 &0.024 &0.018 &0.018 &0.035 &0.024 &0.047 &0.047 &0.024 &0.053 &0.024 &0.03 &0.024 &0.041 &0.047 &0.035 &0.053 &0.047 &0.041 &0.059 &0 &0.018\\ \hline B63 &0.047 &0.041 &0.047 &0.041 &0.035 &0.024 &0.03 &0.024 &0.041 &0.041 &0.03 &0.03 &0.024 &0.024 &0.012 &0.024 &0.018 &0.03 &0.035 &0.047 &0.018 &0.03 &0.018 &0\\ \hline \end{array} $$

综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$


  综合影响矩阵如下

$T=\mathcal{N}(I-\mathcal{N})^{-1}$

$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{24 \times24}} &B11 &B12 &B13 &B14 &B15 &B21 &B22 &B23 &B24 &B25 &B31 &B32 &B33 &B34 &B35 &B41 &B42 &B43 &B51 &B52 &B53 &B61 &B62 &B63\\ \hline B11 &0.037 &0.028 &0.052 &0.071 &0.062 &0.056 &0.096 &0.083 &0.081 &0.071 &0.078 &0.101 &0.056 &0.073 &0.04 &0.063 &0.053 &0.046 &0.017 &0.044 &0.046 &0.085 &0.044 &0.075\\ \hline B12 &0.107 &0.031 &0.07 &0.079 &0.094 &0.082 &0.103 &0.094 &0.098 &0.081 &0.075 &0.119 &0.064 &0.089 &0.046 &0.059 &0.054 &0.046 &0.026 &0.061 &0.046 &0.096 &0.056 &0.083\\ \hline B13 &0.08 &0.058 &0.031 &0.074 &0.053 &0.057 &0.072 &0.071 &0.068 &0.06 &0.041 &0.065 &0.048 &0.075 &0.029 &0.037 &0.044 &0.032 &0.016 &0.027 &0.059 &0.078 &0.046 &0.077\\ \hline B14 &0.086 &0.058 &0.071 &0.04 &0.067 &0.059 &0.084 &0.08 &0.095 &0.069 &0.06 &0.08 &0.066 &0.096 &0.042 &0.071 &0.033 &0.054 &0.025 &0.047 &0.064 &0.096 &0.052 &0.072\\ \hline B15 &0.065 &0.026 &0.056 &0.053 &0.04 &0.079 &0.096 &0.082 &0.075 &0.077 &0.061 &0.079 &0.061 &0.091 &0.056 &0.061 &0.052 &0.044 &0.015 &0.031 &0.044 &0.096 &0.043 &0.05\\ \hline B21 &0.031 &0.024 &0.042 &0.027 &0.048 &0.032 &0.086 &0.073 &0.087 &0.08 &0.053 &0.079 &0.049 &0.068 &0.056 &0.026 &0.023 &0.023 &0.013 &0.015 &0.033 &0.071 &0.03 &0.054\\ \hline B22 &0.039 &0.021 &0.028 &0.035 &0.052 &0.064 &0.052 &0.106 &0.119 &0.088 &0.06 &0.065 &0.038 &0.071 &0.058 &0.046 &0.042 &0.048 &0.013 &0.016 &0.022 &0.083 &0.026 &0.051\\ \hline B23 &0.046 &0.031 &0.049 &0.057 &0.062 &0.073 &0.101 &0.049 &0.114 &0.082 &0.054 &0.077 &0.037 &0.061 &0.056 &0.056 &0.047 &0.057 &0.027 &0.031 &0.048 &0.083 &0.047 &0.062\\ \hline B24 &0.033 &0.025 &0.032 &0.035 &0.066 &0.074 &0.125 &0.106 &0.06 &0.094 &0.05 &0.078 &0.043 &0.082 &0.068 &0.061 &0.052 &0.057 &0.032 &0.031 &0.042 &0.085 &0.042 &0.055\\ \hline B25 &0.025 &0.019 &0.035 &0.031 &0.036 &0.051 &0.086 &0.064 &0.082 &0.035 &0.044 &0.058 &0.045 &0.054 &0.036 &0.046 &0.055 &0.049 &0.01 &0.018 &0.017 &0.086 &0.023 &0.03\\ \hline B31 &0.071 &0.048 &0.056 &0.078 &0.078 &0.074 &0.121 &0.099 &0.115 &0.083 &0.048 &0.084 &0.074 &0.076 &0.093 &0.064 &0.048 &0.052 &0.031 &0.031 &0.066 &0.127 &0.061 &0.069\\ \hline B32 &0.085 &0.061 &0.087 &0.077 &0.094 &0.085 &0.132 &0.116 &0.134 &0.109 &0.077 &0.074 &0.07 &0.086 &0.077 &0.09 &0.074 &0.06 &0.046 &0.048 &0.081 &0.146 &0.091 &0.072\\ \hline B33 &0.031 &0.03 &0.031 &0.05 &0.054 &0.061 &0.077 &0.052 &0.074 &0.092 &0.066 &0.088 &0.033 &0.076 &0.067 &0.033 &0.03 &0.029 &0.045 &0.042 &0.047 &0.114 &0.06 &0.035\\ \hline B34 &0.064 &0.048 &0.068 &0.077 &0.071 &0.071 &0.109 &0.077 &0.115 &0.099 &0.081 &0.113 &0.081 &0.055 &0.059 &0.048 &0.044 &0.042 &0.038 &0.043 &0.067 &0.128 &0.068 &0.057\\ \hline B35 &0.063 &0.04 &0.055 &0.074 &0.093 &0.1 &0.134 &0.125 &0.14 &0.106 &0.091 &0.106 &0.051 &0.077 &0.042 &0.053 &0.042 &0.036 &0.018 &0.023 &0.049 &0.12 &0.053 &0.052\\ \hline B41 &0.077 &0.061 &0.045 &0.053 &0.08 &0.045 &0.076 &0.059 &0.059 &0.056 &0.055 &0.071 &0.027 &0.048 &0.061 &0.028 &0.03 &0.023 &0.012 &0.018 &0.022 &0.081 &0.042 &0.052\\ \hline B42 &0.068 &0.053 &0.068 &0.07 &0.055 &0.032 &0.048 &0.038 &0.042 &0.036 &0.031 &0.046 &0.023 &0.048 &0.02 &0.029 &0.02 &0.019 &0.011 &0.027 &0.02 &0.066 &0.05 &0.042\\ \hline B43 &0.074 &0.058 &0.07 &0.072 &0.083 &0.051 &0.06 &0.054 &0.082 &0.058 &0.038 &0.061 &0.029 &0.051 &0.027 &0.042 &0.032 &0.025 &0.014 &0.031 &0.024 &0.088 &0.055 &0.066\\ \hline B51 &0.078 &0.07 &0.081 &0.091 &0.087 &0.111 &0.146 &0.104 &0.154 &0.115 &0.11 &0.126 &0.096 &0.115 &0.081 &0.109 &0.1 &0.104 &0.029 &0.093 &0.07 &0.168 &0.107 &0.098\\ \hline B52 &0.077 &0.074 &0.09 &0.101 &0.086 &0.093 &0.132 &0.118 &0.14 &0.104 &0.104 &0.131 &0.098 &0.12 &0.095 &0.09 &0.096 &0.082 &0.068 &0.037 &0.085 &0.154 &0.094 &0.096\\ \hline B53 &0.083 &0.066 &0.072 &0.086 &0.095 &0.074 &0.114 &0.095 &0.124 &0.108 &0.118 &0.145 &0.105 &0.123 &0.089 &0.093 &0.093 &0.072 &0.055 &0.056 &0.042 &0.155 &0.092 &0.063\\ \hline B61 &0.084 &0.085 &0.092 &0.096 &0.115 &0.107 &0.141 &0.128 &0.152 &0.121 &0.109 &0.135 &0.094 &0.109 &0.092 &0.097 &0.092 &0.088 &0.025 &0.033 &0.043 &0.092 &0.099 &0.066\\ \hline B62 &0.075 &0.058 &0.084 &0.077 &0.076 &0.074 &0.116 &0.093 &0.129 &0.114 &0.079 &0.125 &0.072 &0.093 &0.071 &0.091 &0.092 &0.078 &0.075 &0.077 &0.079 &0.143 &0.049 &0.067\\ \hline B63 &0.093 &0.074 &0.089 &0.088 &0.085 &0.073 &0.101 &0.085 &0.112 &0.1 &0.078 &0.094 &0.066 &0.081 &0.053 &0.067 &0.057 &0.067 &0.055 &0.075 &0.053 &0.104 &0.058 &0.046\\ \hline \end{array} $$

区段截取的处理


$T$的相关统计数据求解

平均数,均值 $\bar{x}$ 

$\bar{x}= 0.067713097679612 $

总体标准差$\sigma=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2} } $ ( $n$为要素的数目)

$\sigma = 0.029719670036496 $

样本标准差一:$S=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2-1} }$ ( $n$为要素的数目)

$S = 0.029745502001422 $

样本标准差二:$ \bar {S}=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2-n} } $ ( $n$为要素的数目)

$ \bar {S}= 0.030358875852675 $

标准误差 $\sigma_{s}= \frac {\sigma}{n }$ ( $n$为要素的数目)

$\sigma_{s}= 0.0028213790699838 $

方差 $ {\sigma}^{2}= \sigma ^{2} $

$\sigma^{2}= 0.00088325878707821 $

选择的截距方式为:$\lambda= \bar{x} $

$\lambda=0.067713097679612 $

\begin{CD} T@>\lambda=0.067713097679612>> A \\ \end{CD}

$$ a_{ij}= \begin{cases} 1 , \text{ $e_i$}\rightarrow \text{$e_j$ 当: $ t_{ij} > \lambda=0.067713097679612 $} \\ 0, \text{ $e_i$}\rightarrow \text{$e_j$ 当: $ t_{ij} < \lambda=0.067713097679612 $} \end{cases} $$

$\lambda= 0.067713097679612$ 截取后的关系矩阵$ A$

$$ A=\begin{array}{c|c|c|c|c|c|c}{M_{24 \times24}} &B11 &B12 &B13 &B14 &B15 &B21 &B22 &B23 &B24 &B25 &B31 &B32 &B33 &B34 &B35 &B41 &B42 &B43 &B51 &B52 &B53 &B61 &B62 &B63\\ \hline B11 &0 &0 &0 &1 &0 &0 &1 &1 &1 &1 &1 &1 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &1\\ \hline B12 &1 &0 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &1\\ \hline B13 &1 &0 &0 &1 &0 &0 &1 &1 &1 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &1\\ \hline B14 &1 &0 &1 &0 &0 &0 &1 &1 &1 &1 &0 &1 &0 &1 &0 &1 &0 &0 &0 &0 &0 &1 &0 &1\\ \hline B15 &0 &0 &0 &0 &0 &1 &1 &1 &1 &1 &0 &1 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline B21 &0 &0 &0 &0 &0 &0 &1 &1 &1 &1 &0 &1 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline B22 &0 &0 &0 &0 &0 &0 &0 &1 &1 &1 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline B23 &0 &0 &0 &0 &0 &1 &1 &0 &1 &1 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline B24 &0 &0 &0 &0 &0 &1 &1 &1 &0 &1 &0 &1 &0 &1 &1 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline B25 &0 &0 &0 &0 &0 &0 &1 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline B31 &1 &0 &0 &1 &1 &1 &1 &1 &1 &1 &0 &1 &1 &1 &1 &0 &0 &0 &0 &0 &0 &1 &0 &1\\ \hline B32 &1 &0 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &0 &0 &0 &1 &1 &1 &1\\ \hline B33 &0 &0 &0 &0 &0 &0 &1 &0 &1 &1 &0 &1 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline B34 &0 &0 &0 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &0 &0 &0 &0 &0 &0 &0 &0 &1 &1 &0\\ \hline B35 &0 &0 &0 &1 &1 &1 &1 &1 &1 &1 &1 &1 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline B41 &1 &0 &0 &0 &1 &0 &1 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline B42 &0 &0 &1 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B43 &1 &0 &1 &1 &1 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline B51 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &0 &1 &1 &1 &1 &1\\ \hline B52 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &0 &1 &1 &1 &1\\ \hline B53 &1 &0 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &0 &0 &0 &1 &1 &0\\ \hline B61 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &0 &0 &0 &1 &1 &0\\ \hline B62 &1 &0 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &0 &0\\ \hline B63 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &0 &1 &0 &0 &0 &0 &0 &1 &0 &1 &0 &0\\ \hline \end{array} $$