原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{18 \times18}} &A1 &A2 &A3 &B1 &B2 &B3 &B4 &B5 &B6 &C1 &C2 &C3 &C4 &C5 &C6 &D1 &D2 &D3\\ \hline A1 &0 &32 &0 &0 &0 &0 &0 &0 &0 &0 &0 &21 &0 &0 &36 &0 &28 &0\\ \hline A2 &30 &0 &0 &0 &0 &12 &17 &34 &0 &0 &25 &38 &0 &43 &0 &0 &0 &0\\ \hline A3 &27 &22 &0 &0 &0 &20 &16 &28 &42 &38 &21 &43 &24 &30 &0 &0 &0 &40\\ \hline B1 &22 &30 &0 &0 &37 &15 &18 &33 &40 &0 &20 &29 &0 &0 &24 &0 &42 &0\\ \hline B2 &0 &26 &0 &43 &0 &0 &20 &30 &36 &0 &0 &0 &0 &0 &28 &0 &0 &0\\ \hline B3 &0 &11 &0 &0 &0 &0 &42 &0 &0 &0 &0 &0 &0 &0 &19 &0 &0 &0\\ \hline B4 &0 &14 &0 &0 &0 &32 &0 &0 &0 &0 &0 &0 &0 &0 &21 &0 &0 &0\\ \hline B5 &0 &16 &0 &0 &24 &0 &12 &0 &45 &0 &0 &36 &0 &38 &20 &0 &0 &0\\ \hline B6 &18 &0 &29 &0 &0 &22 &24 &32 &0 &30 &0 &42 &40 &46 &36 &40 &35 &45\\ \hline C1 &25 &32 &21 &0 &30 &0 &33 &16 &24 &0 &31 &40 &28 &24 &10 &30 &0 &0\\ \hline C2 &0 &24 &0 &0 &0 &0 &0 &0 &14 &25 &0 &32 &0 &17 &0 &0 &0 &0\\ \hline C3 &19 &35 &26 &0 &0 &0 &0 &0 &30 &44 &30 &0 &0 &36 &0 &24 &0 &0\\ \hline C4 &0 &0 &0 &0 &0 &0 &0 &0 &36 &40 &0 &24 &0 &35 &30 &36 &0 &0\\ \hline C5 &20 &31 &0 &0 &0 &11 &0 &0 &0 &0 &29 &38 &42 &0 &0 &0 &0 &34\\ \hline C6 &0 &0 &0 &37 &30 &18 &10 &0 &35 &0 &0 &22 &0 &40 &0 &20 &0 &0\\ \hline D1 &0 &28 &33 &0 &0 &0 &0 &0 &42 &35 &28 &46 &32 &36 &3 &0 &0 &24\\ \hline D2 &34 &41 &0 &0 &0 &36 &25 &40 &32 &0 &0 &0 &0 &0 &22 &0 &0 &0\\ \hline D3 &45 &0 &0 &0 &16 &24 &28 &0 &30 &0 &0 &0 &0 &33 &0 &0 &30 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$
$$N=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{18 \times18}} &A1 &A2 &A3 &B1 &B2 &B3 &B4 &B5 &B6 &C1 &C2 &C3 &C4 &C5 &C6 &D1 &D2 &D3\\ \hline A1 &0 &0.073 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.048 &0 &0 &0.082 &0 &0.064 &0\\ \hline A2 &0.068 &0 &0 &0 &0 &0.027 &0.039 &0.077 &0 &0 &0.057 &0.087 &0 &0.098 &0 &0 &0 &0\\ \hline A3 &0.062 &0.05 &0 &0 &0 &0.046 &0.036 &0.064 &0.096 &0.087 &0.048 &0.098 &0.055 &0.068 &0 &0 &0 &0.091\\ \hline B1 &0.05 &0.068 &0 &0 &0.084 &0.034 &0.041 &0.075 &0.091 &0 &0.046 &0.066 &0 &0 &0.055 &0 &0.096 &0\\ \hline B2 &0 &0.059 &0 &0.098 &0 &0 &0.046 &0.068 &0.082 &0 &0 &0 &0 &0 &0.064 &0 &0 &0\\ \hline B3 &0 &0.025 &0 &0 &0 &0 &0.096 &0 &0 &0 &0 &0 &0 &0 &0.043 &0 &0 &0\\ \hline B4 &0 &0.032 &0 &0 &0 &0.073 &0 &0 &0 &0 &0 &0 &0 &0 &0.048 &0 &0 &0\\ \hline B5 &0 &0.036 &0 &0 &0.055 &0 &0.027 &0 &0.103 &0 &0 &0.082 &0 &0.087 &0.046 &0 &0 &0\\ \hline B6 &0.041 &0 &0.066 &0 &0 &0.05 &0.055 &0.073 &0 &0.068 &0 &0.096 &0.091 &0.105 &0.082 &0.091 &0.08 &0.103\\ \hline C1 &0.057 &0.073 &0.048 &0 &0.068 &0 &0.075 &0.036 &0.055 &0 &0.071 &0.091 &0.064 &0.055 &0.023 &0.068 &0 &0\\ \hline C2 &0 &0.055 &0 &0 &0 &0 &0 &0 &0.032 &0.057 &0 &0.073 &0 &0.039 &0 &0 &0 &0\\ \hline C3 &0.043 &0.08 &0.059 &0 &0 &0 &0 &0 &0.068 &0.1 &0.068 &0 &0 &0.082 &0 &0.055 &0 &0\\ \hline C4 &0 &0 &0 &0 &0 &0 &0 &0 &0.082 &0.091 &0 &0.055 &0 &0.08 &0.068 &0.082 &0 &0\\ \hline C5 &0.046 &0.071 &0 &0 &0 &0.025 &0 &0 &0 &0 &0.066 &0.087 &0.096 &0 &0 &0 &0 &0.077\\ \hline C6 &0 &0 &0 &0.084 &0.068 &0.041 &0.023 &0 &0.08 &0 &0 &0.05 &0 &0.091 &0 &0.046 &0 &0\\ \hline D1 &0 &0.064 &0.075 &0 &0 &0 &0 &0 &0.096 &0.08 &0.064 &0.105 &0.073 &0.082 &0.007 &0 &0 &0.055\\ \hline D2 &0.077 &0.093 &0 &0 &0 &0.082 &0.057 &0.091 &0.073 &0 &0 &0 &0 &0 &0.05 &0 &0 &0\\ \hline D3 &0.103 &0 &0 &0 &0.036 &0.055 &0.064 &0 &0.068 &0 &0 &0 &0 &0.075 &0 &0 &0.068 &0\\ \hline \end{array} $$
综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{18 \times18}} &A1 &A2 &A3 &B1 &B2 &B3 &B4 &B5 &B6 &C1 &C2 &C3 &C4 &C5 &C6 &D1 &D2 &D3\\ \hline A1 &0.02 &0.094 &0.007 &0.009 &0.009 &0.016 &0.015 &0.018 &0.025 &0.012 &0.015 &0.073 &0.007 &0.032 &0.093 &0.012 &0.068 &0.006\\ \hline A2 &0.088 &0.041 &0.012 &0.003 &0.009 &0.04 &0.053 &0.086 &0.03 &0.023 &0.08 &0.129 &0.019 &0.134 &0.021 &0.014 &0.009 &0.015\\ \hline A3 &0.116 &0.117 &0.032 &0.006 &0.023 &0.08 &0.084 &0.096 &0.161 &0.137 &0.092 &0.186 &0.098 &0.159 &0.048 &0.044 &0.029 &0.125\\ \hline B1 &0.09 &0.127 &0.022 &0.019 &0.103 &0.07 &0.084 &0.118 &0.152 &0.035 &0.073 &0.133 &0.026 &0.072 &0.103 &0.03 &0.117 &0.025\\ \hline B2 &0.027 &0.091 &0.014 &0.108 &0.023 &0.027 &0.073 &0.098 &0.125 &0.02 &0.021 &0.054 &0.02 &0.051 &0.096 &0.022 &0.023 &0.019\\ \hline B3 &0.004 &0.032 &0.001 &0.005 &0.004 &0.011 &0.1 &0.004 &0.007 &0.002 &0.004 &0.009 &0.002 &0.01 &0.05 &0.004 &0.001 &0.002\\ \hline B4 &0.005 &0.038 &0.001 &0.005 &0.005 &0.078 &0.012 &0.004 &0.007 &0.002 &0.004 &0.01 &0.002 &0.012 &0.054 &0.004 &0.002 &0.002\\ \hline B5 &0.031 &0.075 &0.021 &0.013 &0.065 &0.024 &0.052 &0.025 &0.14 &0.031 &0.028 &0.134 &0.031 &0.14 &0.073 &0.028 &0.016 &0.029\\ \hline B6 &0.107 &0.088 &0.101 &0.014 &0.031 &0.098 &0.11 &0.111 &0.101 &0.132 &0.057 &0.202 &0.145 &0.213 &0.136 &0.138 &0.106 &0.146\\ \hline C1 &0.1 &0.14 &0.077 &0.014 &0.083 &0.032 &0.109 &0.072 &0.125 &0.058 &0.115 &0.18 &0.104 &0.141 &0.067 &0.105 &0.02 &0.037\\ \hline C2 &0.023 &0.082 &0.015 &0.002 &0.008 &0.01 &0.016 &0.015 &0.054 &0.077 &0.024 &0.108 &0.019 &0.074 &0.012 &0.018 &0.007 &0.014\\ \hline C3 &0.086 &0.135 &0.085 &0.004 &0.015 &0.024 &0.033 &0.032 &0.116 &0.141 &0.111 &0.085 &0.045 &0.151 &0.03 &0.085 &0.018 &0.036\\ \hline C4 &0.036 &0.05 &0.031 &0.01 &0.019 &0.023 &0.03 &0.024 &0.133 &0.131 &0.04 &0.126 &0.045 &0.146 &0.095 &0.118 &0.016 &0.034\\ \hline C5 &0.075 &0.103 &0.013 &0.003 &0.008 &0.04 &0.021 &0.015 &0.037 &0.033 &0.089 &0.129 &0.108 &0.051 &0.022 &0.023 &0.014 &0.088\\ \hline C6 &0.032 &0.048 &0.021 &0.095 &0.084 &0.065 &0.053 &0.03 &0.126 &0.031 &0.031 &0.107 &0.033 &0.139 &0.035 &0.069 &0.023 &0.029\\ \hline D1 &0.059 &0.129 &0.108 &0.006 &0.019 &0.033 &0.042 &0.038 &0.164 &0.142 &0.115 &0.199 &0.123 &0.176 &0.045 &0.048 &0.024 &0.098\\ \hline D2 &0.1 &0.125 &0.012 &0.009 &0.015 &0.105 &0.087 &0.113 &0.105 &0.017 &0.017 &0.051 &0.018 &0.052 &0.085 &0.019 &0.017 &0.017\\ \hline D3 &0.126 &0.039 &0.01 &0.007 &0.042 &0.08 &0.089 &0.022 &0.093 &0.015 &0.014 &0.038 &0.021 &0.104 &0.036 &0.015 &0.086 &0.019\\ \hline \end{array} $$