特征结构的计算与说明
原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{11 \times11}} &A1 &A2 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3\\ \hline A1 &0 &50 &12 &46 &43 &34 &38 &24 &45 &23 &40\\ \hline A2 &51 &0 &17 &34 &21 &30 &47 &16 &12 &4 &7\\ \hline B1 &18 &23 &0 &39 &51 &34 &32 &19 &36 &42 &29\\ \hline B2 &24 &16 &16 &0 &45 &45 &24 &30 &36 &28 &33\\ \hline C1 &25 &20 &18 &21 &0 &36 &16 &21 &33 &25 &31\\ \hline C2 &19 &15 &45 &30 &32 &0 &14 &18 &23 &29 &25\\ \hline C3 &21 &13 &25 &37 &29 &27 &0 &28 &36 &32 &32\\ \hline C4 &32 &22 &21 &38 &31 &31 &36 &0 &31 &28 &27\\ \hline D1 &18 &11 &50 &21 &35 &50 &26 &33 &0 &31 &30\\ \hline D2 &14 &17 &27 &24 &23 &27 &36 &19 &35 &0 &17\\ \hline D3 &20 &16 &26 &15 &20 &23 &27 &15 &22 &29 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$
- $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{11 \times11}} &A1 &A2 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3\\ \hline A1 &0 &0.115 &0.028 &0.106 &0.099 &0.078 &0.088 &0.055 &0.104 &0.053 &0.092\\ \hline A2 &0.117 &0 &0.039 &0.078 &0.048 &0.069 &0.108 &0.037 &0.028 &0.009 &0.016\\ \hline B1 &0.041 &0.053 &0 &0.09 &0.117 &0.078 &0.074 &0.044 &0.083 &0.097 &0.067\\ \hline B2 &0.055 &0.037 &0.037 &0 &0.104 &0.104 &0.055 &0.069 &0.083 &0.064 &0.076\\ \hline C1 &0.058 &0.046 &0.041 &0.048 &0 &0.083 &0.037 &0.048 &0.076 &0.058 &0.071\\ \hline C2 &0.044 &0.035 &0.104 &0.069 &0.074 &0 &0.032 &0.041 &0.053 &0.067 &0.058\\ \hline C3 &0.048 &0.03 &0.058 &0.085 &0.067 &0.062 &0 &0.064 &0.083 &0.074 &0.074\\ \hline C4 &0.074 &0.051 &0.048 &0.088 &0.071 &0.071 &0.083 &0 &0.071 &0.064 &0.062\\ \hline D1 &0.041 &0.025 &0.115 &0.048 &0.081 &0.115 &0.06 &0.076 &0 &0.071 &0.069\\ \hline D2 &0.032 &0.039 &0.062 &0.055 &0.053 &0.062 &0.083 &0.044 &0.081 &0 &0.039\\ \hline D3 &0.046 &0.037 &0.06 &0.035 &0.046 &0.053 &0.062 &0.035 &0.051 &0.067 &0\\ \hline \end{array} $$
综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{11 \times11}} &A1 &A2 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3\\ \hline A1 &0.115 &0.2 &0.153 &0.237 &0.244 &0.233 &0.216 &0.161 &0.239 &0.178 &0.214\\ \hline A2 &0.19 &0.072 &0.125 &0.178 &0.16 &0.179 &0.197 &0.114 &0.135 &0.104 &0.113\\ \hline B1 &0.141 &0.135 &0.116 &0.209 &0.249 &0.219 &0.19 &0.141 &0.211 &0.209 &0.181\\ \hline B2 &0.146 &0.115 &0.144 &0.117 &0.225 &0.23 &0.164 &0.156 &0.2 &0.172 &0.181\\ \hline C1 &0.133 &0.112 &0.131 &0.145 &0.11 &0.19 &0.131 &0.122 &0.174 &0.147 &0.159\\ \hline C2 &0.122 &0.103 &0.187 &0.167 &0.184 &0.116 &0.129 &0.118 &0.157 &0.16 &0.149\\ \hline C3 &0.135 &0.105 &0.157 &0.191 &0.188 &0.188 &0.108 &0.148 &0.195 &0.176 &0.175\\ \hline C4 &0.164 &0.13 &0.154 &0.202 &0.2 &0.203 &0.192 &0.093 &0.193 &0.173 &0.171\\ \hline D1 &0.135 &0.107 &0.218 &0.169 &0.212 &0.243 &0.172 &0.164 &0.128 &0.184 &0.179\\ \hline D2 &0.109 &0.102 &0.148 &0.151 &0.159 &0.17 &0.17 &0.118 &0.177 &0.093 &0.129\\ \hline D3 &0.113 &0.095 &0.135 &0.122 &0.141 &0.149 &0.143 &0.101 &0.14 &0.145 &0.081\\ \hline \end{array} $$