返回首页
基本信息
从最终层级图进行初步判断
论文原始截图 | |
同一层级是否有横向非回路箭头 | 有 |
初步评估结果 | 错 |
说明 | 按照结果优先的划分,那个要素会在上一层,也就是最近的上一层下面一层。因此马上断定,该文错了。 |
从原始矩阵开始根据文章采用的方法进行计算
原始矩阵=
$$原始矩阵A=\begin{array} {c|ccccccc}{M_{22 \times22}} &1 &2 &3 &4 &5 &6 &7 &8 &9 &10 &11 &12 &13 &14 &15 &16 &17 &18 &19 &20 &21 &22\\
\hline 1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\
\hline 2 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\
\hline 4 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\
\hline 5 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 6 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\
\hline 7 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 8 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 9 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 10 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 11 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\
\hline 12 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 13 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 14 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 15 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 16 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 17 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 18 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 19 &0 &0 &0 &0 &0 &1 &0 &1 &0 &0 &0 &0 &1 &0 &0 &0 &1 &0 &0 &0 &0 &0\\
\hline 20 &0 &0 &0 &0 &1 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 21 &0 &0 &0 &1 &0 &1 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 22 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &1 &0 &0 &0 &0 &0 &0\\
\hline \end{array} $$
计算结果比较
$$可达矩阵R=\begin{array} {c|ccccccc}{M_{22 \times22}} &1 &2 &3 &4 &5 &6 &7 &8 &9 &10 &11 &12 &13 &14 &15 &16 &17 &18 &19 &20 &21 &22\\
\hline 1 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\
\hline 2 &0 &1 &1 &0 &1 &0 &0 &0 &1 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\
\hline 3 &0 &0 &1 &0 &1 &0 &0 &0 &1 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\
\hline 4 &0 &0 &0 &1 &1 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\
\hline 5 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 6 &0 &0 &0 &0 &1 &1 &0 &1 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\
\hline 7 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 8 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 9 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 10 &0 &0 &0 &0 &1 &1 &0 &1 &1 &1 &1 &0 &0 &0 &0 &0 &0 &1 &0 &1 &0 &0\\
\hline 11 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\
\hline 12 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 13 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 14 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 15 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\
\hline 16 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\
\hline 17 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\
\hline 18 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\
\hline 19 &0 &0 &0 &0 &1 &1 &0 &1 &1 &0 &0 &0 &1 &0 &0 &0 &1 &0 &1 &1 &0 &0\\
\hline 20 &0 &0 &0 &0 &1 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\
\hline 21 &0 &0 &0 &1 &1 &1 &0 &1 &1 &0 &1 &0 &0 &0 &0 &0 &0 &1 &0 &1 &1 &0\\
\hline 22 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &1 &0 &0 &0 &0 &0 &1\\
\hline \end{array} $$$$缩减矩阵S=\begin{array} {c|ccccccc}{M_{22 \times22}} &1 &2 &3 &4 &5 &6 &7 &8 &9 &10 &11 &12 &13 &14 &15 &16 &17 &18 &19 &20 &21 &22\\
\hline 1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\
\hline 2 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\
\hline 4 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\
\hline 5 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 6 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\
\hline 7 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 8 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 9 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 10 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 11 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\
\hline 12 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 13 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 14 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 15 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 16 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 17 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 18 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 19 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &1 &0 &0 &0 &0 &0\\
\hline 20 &0 &0 &0 &0 &1 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 21 &0 &0 &0 &1 &0 &1 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\
\hline 22 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &1 &1 &0 &0 &0 &0 &0 &0\\
\hline \end{array} $$原始结果
结论:错误
该系统是一个没有回路的系统。层级严格去算,应该不会出错的。原文没有分析过程。
想在线计算解释结构模型的或者直接生成论文的请发电子邮件到, hwstu #sohu.com 把#替换成 @