欢迎来到化学加!萃聚英才,共享化学!化学加,加您更精彩!客服热线:400-8383-509

化学加_合成化学产业资源聚合服务平台

2021年国内国际十大科技新闻揭晓

来源:科技日报   记者 陆成宽   2021-12-28
导读:26日,由科技日报社主办、部分两院院士和媒体人士共同评选出的2021年国内、国际十大科技新闻揭晓。

入选的2021年国内十大科技新闻分别是:异源四倍体野生稻快速驯化获突破;“祖冲之号”“九章二号”量子计算原型机研制成功;我国首次火星探测任务天问一号着陆火星;“拉索”发现迄今最高能量光子;神舟两次成功发射,中国人长期驻守太空;金沙江白鹤滩水电站投产发电;“十四五”开局之年,科技体制改革举措密集出台;首次实现淀粉全人工合成;凯勒几何两大核心猜想被证明;我国首个抗新冠病毒特效药获批上市。

入选的2021年国际十大科技新闻分别是:脑机接口能将脑中“笔迹”转为字句;迄今最精确测量结果揭示缪子行为异常;宏观物体量子纠缠证据确凿;天问一号探测器成功登陆火星;LHC揭秘宇宙诞生瞬间的“第一种物质”;CRISPR基因编辑对人类疗效首次证明;猪肾首次成功植入人体;可对抗新冠病毒变异的特效药不断出现;首个可自我繁殖活体机器人问世;AI能“构想”新蛋白质结构。

2021年国内十大科技新闻解读


异源四倍体野生稻快速驯化获突破

一株自生自灭的野生稻成为农民手中的粮食,需要7000年到1万年的驯化。而中国科学院种子创新研究院/遗传与发育生物学研究所李家洋院士团队在全球首次提出异源四倍体野生稻快速从头驯化的新策略,可能将这个驯化过程缩短到几十年,甚至更短。研究成果2月4日发表于《细胞》杂志。

当前,田间的栽培稻由“祖先”二倍体野生稻经过数千年的人工驯化而来,驯化过程在改良其重要农艺性状的同时,也造成了遗传多样性的大量减少、优势基因资源的缺失。

除了二倍体栽培稻,稻属还有其他25种野生植物,按照基因组特征又可以分成11类,包括6类二倍体基因组和5类四倍体基因组。其中,异源四倍体野生稻具有生物量大、自带杂种优势、环境适应能力强等特点,但同时也具有非驯化特征,无法进行农业生产。

为攻克培养多倍体水稻新作物的难题,研究人员首次提出异源四倍体野生稻快速从头驯化的新策略。按照这条技术路线,他们成功创制落粒性降低、芒长变短、株高降低、粒长变长、茎秆变粗、抽穗时间不同程度缩短的各种基因组编辑异源四倍体野生稻材料。这项研究开辟了全新的作物育种方向,是该领域的一项重大突破性进展。

“祖冲之号”“九章二号”量子计算原型机研制成功

5月8日,中科大团队制造的“祖冲之号”,打破了量子计算机最大量子比特数的世界纪录。它以一个62比特的超导量子计算原型机,实现了可编程的二维量子行走。10月,它又升级到了“祖冲之二号”,可以操纵66个比特。

10月,中国科大、中科院上海微系统与信息技术所等构建了113个光子的“九章二号”,处理“高斯玻色取样”速度比目前最快的超级计算机快1024倍,进一步提供了量子计算加速的实验证据。这也标志着我国成为目前唯一同时在两种物理体系都实现“量子优越性”的国家。

实现用光量子作为计算载体,要攻克诸多难关,包括制造高品质光子源、实现高精度锁相和规模化干涉等等。比如说,光子源每次只放出1个光子,且每个光子一模一样,这是巨大挑战。同时,锁相的精度相当于100公里距离的传输误差不能超过一根头发直径。高品质的光量子比特和逻辑器件,维持不了100毫秒,就要抓住这一瞬间让量子计算机完成任务。相关技术要达到操纵光的极致。

近年来,中国在量子科技领域取得了诸多世界第一。中国科学家正在进一步提高量子计算机的稳定性和纠错能力,让量子计算机在物理和化学仿真、分子模拟构建、人工智能等方面大显身手。

我国首次火星探测任务天问一号着陆火星

历经9个多月的长途跋涉,经历了惊心动魄的火星着陆“黑色九分钟”,5月15日,我国首次火星探测任务天问一号探测器在火星乌托邦平原南部预选着陆区着陆,在火星上首次留下中国人的印迹,迈出了我国星际探测征程的重要一步。

6月11日,国家航天局举行天问一号探测器着陆火星首批科学影像图揭幕仪式,公布了由“祝融号”火星车拍摄的影像图。首批科学影像图的发布,标志着我国首次火星探测任务取得圆满成功。

我国首次火星探测任务于2016年立项,计划通过一次任务实现火星环绕、着陆和巡视探测,其科学目标主要是实现对火星形貌与地质构造特征、火星表面土壤特征与水冰分布、火星表面物质组成、火星大气电离层及表面气候与环境特征、火星物理场与内部结构等研究。

天问一号探测器于2020年7月23日在海南文昌由长征五号运载火箭成功发射,2021年2月10日成功实施火星捕获,成为我国第一颗人造火星卫星,2月24日探测器进入火星停泊轨道,开展了为期约3个月的环绕探测,为顺利着陆火星奠定了基础。

天问一号探测器成功着陆火星,是我国首次实现地外行星着陆,使我国成为第二个成功着陆火星的国家。

“拉索”发现迄今最高能量光子

5月17日,《自然》发表的一项最新成果,改变了人们对银河系的传统认知:位于四川稻城的高海拔宇宙线观测站“拉索”(LHAASO)在银河系内发现2个能量超过1拍电子伏特(PeV,1000万亿电子伏特)的光子,这2个超高能光子分别来自天鹅座和蟹状星云,其中1个光子能量高达1.4PeV。

“这是人类迄今观测到的最高能量光子,突破了人类对银河系粒子加速的传统认知,开启了超高能伽马天文学的时代。”中科院高能所研究员、“拉索”首席科学家曹臻说。

此前,银河系内的宇宙线加速源存在能量极限是个“常识”,过去预言的极限就在1PeV附近,导致伽马射线能谱在0.1PeV以上有“截断”现象。“拉索”的发现完全突破了这个“极限”,确定了银河系广泛存在的天然高能加速器,可以把宇宙线加速超过PeV,甚至于10PeV以上。

7月9日,《科学》报道“拉索”精确测量了高能天文学标准烛光的亮度。科学家们确认,这个标准烛光就是由宋朝记录的“天关客星”经千年演化形成的著名天体——蟹状星云。“拉索”测量了标准烛光在2400倍的能量范围内的亮度,尤其是在能量最高的超高能伽马波段测定了新标准。

神舟两次成功发射中国人长期驻守太空

仰望冬夜,常能看到一枚亮星划过中天。那是每90分钟绕地球一圈的“天宫”,还有三位坚守岗位的中华儿女。

6月17日,神舟十二号载人航天飞船成功发射,并与天和核心舱成功完成对接。9月17日三位宇航员回到地球。10月16日,神舟十三号将另外三名航天员送上太空,他们要驻留半年,这也是空间站航天员乘组一般的驻留周期。这意味着,中国的载人航天迈过试验阶段,实现太空往返常态化。中国的空间站即将成为人类探索宇宙的主力阵地。

还记得几十年前,美国拒绝中国人参与国际空间站;如今,中国白手起家,建成了自己的空间站,三年后还将成为人类唯一的太空前哨。天宫的存在,让十几个国家向中国提出申请,合作探索外太空。天宫骄傲地宣示地球人的智慧和力量。

最近两年,航天事业捷报频传,北斗组网,火星探索,空间站常驻,紧锣密鼓,目不暇接,离不开中国航天人数十年如一日的奋斗和登攀。今年两艘神舟飞船成功执行任务,更让许多年轻人热血沸腾,拍手叫好,就像有网友的留言“只想大呼666!”大家期待天宫一号上诞生更多科学成果,更多有趣的探索,书写更辉煌的中国故事。

金沙江白鹤滩水电站投产发电

世界第二大水电站,开始工作了!6月28日,白鹤滩水电站首批机组正式投产发电。白鹤滩水电站位于云南和四川交界的金沙江干流上,是当今世界在建的规模最大、难度最高的水电工程。它的最大坝高289米,排名世界第三;总装机容量达1600万千瓦,仅次于三峡水电站。

白鹤滩水电站拥有16台世界最大的100万千瓦水轮发电机,全部实现国产化。12月19日,最后一台机组发电机组转轮完成吊装。转轮被称为水轮发电机组的“心脏”,过流能力、水力效率及运行稳定度能看出技术高低。重达338.2吨的9号机组转轮创新性采用15个长叶片和15个短叶片相结合,达到各方面的最优。

白鹤滩大坝的总库容和防洪库容,均为金沙江下游4个梯级电站中最大,可提高宜宾、泸州、重庆的防洪标准,并支援三峡以下长江各城市防洪。它还可以实现枯水期均匀下泄,让下游原本半年不能通航的江段,全年都能通航。

习近平总书记为此致贺信指出:“白鹤滩水电站是实施西电东送的国家重大工程,是当今世界在建规模最大、技术难度最高的水电工程。全球单机容量最大功率百万千瓦水轮发电机组,实现了我国高端装备制造的重大突破。”

“十四五”开局之年科技体制改革举措密集出台

2021年在中国科技历史上具有重要意义。习近平总书记出席两院院士大会中国科协第十次全国代表大会、国家科技奖励大会、亲临国家“十三五”科技创新成就展现场参观,对科技创新取得的重大成就给予充分肯定。过去一年,党中央国务院部署系列科技改革任务,包括科技发展规划、各领域科技行动计划、重大改革举措工作方案,全面形成了“十四五”的开局部署。

2021年的科技体制改革全面而深刻。相关政府部门持续改革完善科研经费管理,为科研人员松绑、减负、赋能,为人的创造性服务,让科研人员感受到实实在在的成就感与获得感;在具有战略性的项目管理上探索新机制,实施“揭榜挂帅”机制;支持不同技术路线并行攻关,在关键性应急性重大任务中安排“赛马”攻关项目。启动颠覆性技术专项,积极探索首席科学家负责制,大范围设立青年科学家项目。

国务院办公厅8月接连发布《关于完善科技成果评价机制的指导意见》《关于改革完善中央财政科研经费管理的若干意见》等文件,引起科技界的普遍关注。

科技改革的出发点和落脚点就是要重点围绕科技创新团队、科研人员、科研机构做工作,真正把优势科技资源配置到最紧迫最急需的地方,切实提高科技创新效能,有效激发全社会的创新活力,强化科技对经济社会发展的支撑引领。

首次实现淀粉全人工合成

以二氧化碳为原料,不依赖植物光合作用,直接人工合成淀粉——看似科幻的一幕,在实验室里真实地发生了。

中科院天津工业生物技术研究所研究人员提出了一种颠覆性的淀粉制备方法,不依赖植物光合作用,以二氧化碳、电解产生的氢气为原料,成功生产出淀粉,国际上首次在实验室实现了二氧化碳到淀粉的从头合成,使淀粉生产从传统农业种植模式向工业车间生产模式转变成为可能,取得原创性突破。相关研究成果9月24日在线发表于《科学》杂志。

“长期以来,科研人员一直在努力改进光合作用这一生命过程,希望提高二氧化碳的转化速率和光能的利用效率,最终提升淀粉的生产效率。”论文通讯作者、中科院天津工业生物技术研究所所长马延和直言。

为解决这一难题,天津工业生物技术研究所研究人员从头设计了11步主反应的非自然二氧化碳固定与人工合成淀粉新途径,在实验室中首次实现了从二氧化碳到淀粉分子的全合成。

这一合成生物学领域重大原创突破,有望对粮食生产产生革命性影响,对生物制造产业的发展具有里程碑意义。

凯勒几何两大核心猜想被证明

11月初,媒体报道,《美国数学会杂志》发表了中国科学技术大学几何物理中心创始主任陈秀雄教授与合作者程经睿在偏微分方程和复几何领域取得的“里程碑式结果”。

他们解出了一个四阶完全非线性椭圆方程,成功证明了“强制性猜想”和“测地稳定性猜想”这两个国际数学界60多年悬而未决的核心猜想,解决了若干有关凯勒流形上常标量曲率度量和卡拉比极值度量的著名问题。

凯勒流形上常标量曲率度量的存在性,是过去60多年来几何中的核心问题之一。关于其存在性,有三个著名猜想——稳定性猜想、强制性猜想和测地稳定性猜想。经过近20年众多著名数学家的工作,强制性猜想和测地稳定性猜想中的必要性已变得完全清晰,但其充分性的证明在陈-程的工作之前被认为遥不可及。

求出一类四阶完全非线性椭圆方程的解,就能证明常标量曲率度量的存在性。陈-程的工作恰恰就是在K—能量强制性或测地稳定性的假设下,证明了这类方程解的存在。这类方程的研究极为困难,此前,对此类方程几乎没有合适的处理工具。陈-程最重要的突破是给出了这类方程的先验估计以及成功实现了陈秀雄提出的新的连续参数的策略。

我国首个抗新冠病毒特效药获批上市

12月8日,国家药品监督管理局宣布,应急批准腾盛华创医药技术公司的新冠病毒中和抗体联合治疗药物安巴韦单抗注射液及罗米司韦单抗注射液注册申请。这是我国首个获批的自主知识产权新冠病毒中和抗体联合治疗药物。

此获批标志着中国拥有了首个全自主研发并经过严格随机、双盲、安慰剂对照研究证明有效的抗新冠病毒特效药。

这款药物的用途包括:接种了疫苗也产生不了中和抗体的人,比如一些老年人和免疫低下群体;感染了绕过疫苗的新突变毒株的病人;需要预防的密接人群。

安巴韦单抗和罗米司韦单抗联合疗法在实验中有非常好的表现。与安慰剂相比,国产新药治疗能将中轻度新冠患者转为重症和死亡的风险降低80%。国产新药设计之初就考虑到了应对新冠变异株的有效性问题,这一对抗体最大可能地避免了变异株对中和抗体的逃逸。

今年,科技抗疫支撑保障了中国经济平稳运行。全国科研精锐力量聚焦疫苗、药物、检测试剂等5大方向持续开展应急攻关,为常态化疫情防控、保障经济平稳运行提供了“硬核科技力量”。科技保驾护航,战疫更有底气!

2021年国际十大科技新闻解读


这是由祝融号火星车拍摄的“着巡合影”图。新华社发(国家航天局供图)

科技日报记者 张梦然

2021,新冠疫情盘桓不去,百年变局叠加其上。我们每一个人都在蹒跚前行,也比以往,更加需要光。

这光,是科学。

这一年,疫情并未阻拦科学之光。你看得懂的脑机接口、火星登陆,难以理解的缪子测量、量子纠缠,以及因抗击新冠而频出成果的生物医药领域:抗病毒新药、CRISPR疗法、蛋白质预测……

我们坚信,有光在,希望就在。

脑机接口能将脑中“笔迹”转为字句

这是一个“躺平”的实验者。

他四肢完全不动,“纯靠”想象自己脑海里有一只手在写字,然后就真的写出来了。这一场景在一个概念验证型研究中已经出现。

包括美国斯坦福大学科学家在内的联合团队今年宣布,结合人工智能成功开发出全新系统,利用大脑运动皮层的神经活动解码“手写”笔迹,并使用递归神经网络解码方法将笔迹实时翻译成文本,以比此前任何时候都要快很多的速度将患者“手写”的想法转换为电脑屏幕上的文本。

让失去行动或说话能力的人恢复与外界的交流,其实是脑机接口技术的重要功能与目标。这个领域的一个主要研究方向是恢复大运动功能,比如拿握或抓取。然而,高度精细的动作,比如手写或盲打,虽然能加快交流速度,但此前的交流只能通过2D计算机光标进行点选式打字来实现,速度一直局限在每分钟最多40个字符左右。但此次联合团队在研究中发现,一位颈部以下瘫痪的研究对象在使用一种新的“手写脑机接口”时,写字速度能达到每分钟90个字符,准确率为94.1%,表明了“手写脑机接口”能准确解码瘫痪多年患者的快速、精细动作。

迄今最精确测量结果揭示缪子行为异常

即使看不懂这一成果的内容,我们也要知道:这是物理学界的一件大事。

在美国费米实验室进行的缪子反常磁矩实验显示,缪子的行为与标准模型理论预测不相符。上海交通大学缪子物理团队参与的美国费米实验室缪子反常磁矩实验(Muon g-2)首批结果4月份公布,以前所未有的测量精度,为新物理的存在提供了强有力证据。

缪子的“体重”比它的近亲电子重200倍,在宇宙射线穿透地球大气层时自然产生,此外,费米实验室里的质子加速器也可以大量制造缪子。在最新实验中,研究人员将费米实验室的粒子加速器产生的缪子束流送入一个直径为15米的超导磁铁存储环内,强大的磁铁使缪子保持在圆形轨道上,利用放在环内侧的探测器,可以精确测量缪子的进动频率,从而获得了迄今最精确g-因子值,且与布鲁克海文实验室得出的测量值相吻合。

这两个实验结果结合起来,显示缪子行为与标准模型之间不匹配的置信度为4.2倍标准方差,仅比5倍标准方差(科学家宣布发现的最终标准)略小,这是一个非常有力的证据。

而“这两个实验结果携手,为新物理的存在提供了强有力的证据,预示着世界上可能存在新的未知粒子或作用力。”

宏观物体量子纠缠证据确凿

如果说量子力学有什么令人讨厌之处,那第一绝对是太难懂,第二则是“摸不着”。

人们会认为,量子这一领域很大程度上如同“想象”的学科,在现实中几乎不可能看到。

实际上,量子力学不仅仅是微观的理论,我们所知的所有物质,从根本上来说都是量子。但不得不承认,奇怪的量子效应在大于几个原子的任何事物中都很难观察到。因此,找寻宏观物体的量子效应的证据,也成为物理学家们的一大目标。

美国《科学》杂志5月发表两项量子力学重磅突破:其中一项研究,科学家发现了宏观物体量子纠缠的直接证据,美国国家标准技术研究所团队使用微波脉冲让两张小的铝片膜进入量子纠缠状态。该铝片膜的尺寸为每张长20微米,宽14微米,厚100纳米,质量为70皮克,相当于大约1万亿个原子的质量。尽管非常微小,但以量子的标准而言,它们已经达到了相当大的尺度。

另一项研究中,芬兰阿尔托大学等机构在8毫开尔文的温度下,让两个铝鼓膜进入长时间、相对稳定的纠缠态,实现了对不确定性原理的“规避”,而这正是量子力学的基本定律之一。

这两项实验都以确凿的证据证明了宏观物体也可以实现量子纠缠,不但有望在未来量子网络中提供长期网络节点,还能极大地推动暗物质与引力波探测相关技术研发。

天问一号探测器成功登陆火星

乌托邦平原,科幻中经常出现的大本营、太空船的建造基地以及超级太空舰队驻守的基地。

今年5月15日,中国天问一号探测器成功着陆于火星乌托邦平原南部预选着陆区,中国成为第二个成功着陆火星的国家。

美国《华尔街日报》刊登标题为《成功登陆火星,中国的加冕时刻》的报道,文章称:“中方向世界发出信号,已在星际探索能力上赶上美国,并可取代其太空领导地位。”英国《自然》杂志评论称:中国的一次火星计划,就做到了美国几十年才完成的三件事:进入火星轨道、在火星表面着陆以及运行火星车。西班牙《国家报》网站报道称,作为由中国自主进行的火星探测任务,天问一号探测器获得的成功是引人注目的。英国《金融时报》网站报道指出,中国的太空计划近年来加速发展,在几十年的追赶后逐渐向美国靠拢。

天问一号探测器着陆火星首批科学影像图,已于6月11日公布,这标志着中国首次火星探测任务取得圆满成功。

LHC揭秘宇宙诞生瞬间的“第一种物质”

很久很久以前——在大约140亿年前,宇宙从远比现在更热、更稠密的状态转变为急剧膨胀,科学家将这一过程命名为“大爆炸”。尽管已经知道这种快速膨胀创造了粒子、原子、恒星、星系以及生命,但一切是如何发生的,细节依然未知。

现在,科学家想告诉你们这一切是如何开始的。

丹麦哥本哈根大学尼尔斯·玻尔研究所科学家利用大型强子对撞机(LHC),揭示了宇宙大爆炸第一个0.000001秒内发生的新细节,即第一个微秒内一种特殊的等离子体发生了什么。

这是“最开始”的故事。科学家们研究了一种叫做夸克—胶子等离子体的物质,它是在大爆炸第一个微秒内存在的唯一物质,它的独特经历是:首先,等离子体被宇宙热膨胀所分离;然后,夸克碎片重组为所谓的强子;一个有3个夸克的强子组成一个质子,是原子核的一部分,这些也是构成地球、人类和现今包容着我们的宇宙的基础核心。

科学家现在能够看到夸克—胶子等离子体是如何从原来的物质状态,演变为原子的核心和生命的基石,其相关细节无疑为我们今天所知的宇宙演变提供了一块重要“拼图”。

CRISPR基因编辑对人类疗效首次证明

能被称为里程碑的科学事件不多,但今年首个人体内CRISPR基因编辑临床试验结果公布,且疗法安全有效,这就被认为是一个里程碑式的事件。

治疗转甲状腺素蛋白(TTR)淀粉样变性多发性神经病的CRISPR基因编辑疗法NTLA-2001,在Ⅰ期临床试验中取得积极结果:单剂NTLA-2001导致血清中的TTR水平平均下降87%,最大可达96%。这是首批支持体内CRISPR疗法安全性和效果的临床数据,被认为有望开启医学新时代。

开展这项研究的公司之一Intellia Therapeutics,就是因CRISPR而获诺奖的詹妮弗·杜德娜创办的。NTLA-2001通过非病毒脂质纳米颗粒递送,可以特异性敲除TTR基因,从而降低TTR蛋白的表达,试验结果令人振奋。

也是在今年,CRISPR技术另一突破是改善了遗传性失明,美国Cedars-Sinai医学中心的一项研究首次证明,一种新技术可通过去除遗传缺陷治疗遗传性疾病,阻止患有一种遗传性失明的大鼠的视网膜变性。研究小组专注于遗传性视网膜色素变性,这种退行性眼病可能导致失明,目前还没有可治愈的方法,但研究人员使用了一种叫做CRISPR/Cas9的技术,删除一个可导致失明的遗传突变。虽然这项研究采用的是大鼠,但它依然对人类有潜在影响。

猪肾首次成功植入人体

为什么是猪?

与灵长类动物猴子、猿相比,猪在器官获取方面更有优势:容易饲养,产仔数多,成熟得也快,6个月内就可达到成人体型大小,更重要的,在器官移植伦理方面争议较小。几十年来,猪的心脏瓣膜已被成功移植到人体内,也有猪胰岛细胞注射进人体内治疗糖尿病的成功案例。

早期的研究表明,猪的肾脏在非人灵长类动物体内可存活长达一年,但这是第一次在人类患者身上进行尝试。

9月,在美国纽约大学朗格尼医学中心,研究人员进行了一场被称为异种器官移植的手术。移植器官肾脏来源于一头转基因猪,它被移植入一位脑死亡的志愿者体内。移植后的肾脏工作了54小时。在此期间,研究人员观察到,志愿者的尿液和肌酐水平“正常且与人类肾脏移植手术中的水平相当”,而且未见身体的排异反应。领导这项研究的移植外科医生亦表示,移植肾功能的测试结果正常且超出预期。

科学家其实一直在研究使用动物器官进行移植的可能性,但在如何防止人体立即排异的问题上一直受阻。如今,基因编辑技术让猪的器官不被人体排异成为可能。这是一项潜在的重大突破,这一被称为“变革时刻”的医学进步,未来可能为成千上万需要器官移植的患者带来新希望。

可对抗新冠病毒变异的特效药不断出现

在今年,几个佶屈聱牙的希腊字母,每个人都能说得顺溜无比。

最早在印度被发现的新冠病毒变异毒株德尔塔,在2021年快速传播,这一毒株不但传染性强,感染者更易发展成重症。另一个变种奥密克戎,则最早于11月9日在南非首次检测到,世界卫生组织将其定义为第五种“值得关切的变异株”,其在全球总体风险被评估为“非常高”。

但也是在今年,抗新冠强效药出现,人们看到了疫苗之后的另一线曙光。

数据显示,美国默克公司的抗病毒药物莫奈拉韦,可将未接种疫苗的高危人群的住院或死亡风险降低30%。如果在出现症状的3天内开始服用,辉瑞公司的抗病毒药物PF-07321332将使住院率降低89%。科学家们强调,抗病毒药物不能取代疫苗接种,但它们仍然至关重要。如果新的奥密克戎变体导致突破性感染激增,它们的重要性将更加突出。

12月8日,中国首家自主知识产权新冠病毒中和抗体联合治疗药物获批。最新披露的三期临床试验最终结果显示,联合治疗将门诊患者的住院和死亡风险降低了80%。更为独特的是,该联合用药给出了长达10天的黄金救治期(国际上其他新冠治疗用药临床试验多设计为5天内救治)。

首个可自我繁殖活体机器人问世

为图永续生存,生命必须繁衍。

数十亿年来,生物体为了延续生命已经进化出多种繁衍方式。但在12月,美国佛蒙特大学和塔夫茨大学研究团队发现了一种全新的生物繁殖方式,并利用这一发现创造了有史以来第一个可自我繁殖的活体机器人——Xenobots 3.0。

去年,该研究团队用非洲爪蟾早期胚胎中的皮肤和心脏细胞组装成一种全新的生命形式,创造出全球首个活体机器人“Xenobots”。此次全新升级的Xenobots 3.0仅有毫米宽度,既不是传统的机器人,也不是一种动物,而是活的、可编程的有机体。如果将足够多的异种机器人放置在培养皿中彼此靠近,它们会聚集并开始将其他漂浮在溶液中的单个干细胞堆叠起来。于是,多达数百个干细胞在它们如同吃豆人形状的“嘴”中组装了“婴儿”异种机器人。几天后,这些“婴儿”就会变成外观和动作都跟母体一样的新异种机器人。然后,这些新的Xenobots可再次出去寻找细胞,并建立自己的“副本”,就这样周而复始,不断复制。

它完全打破了人们对于机器人这一词的理解。但这种机器人未来或可为外伤、先天缺陷、癌症、衰老等提供更直接、更个性化的药物治疗。

AI能“构想”新蛋白质结构

使用人工智能(AI)预测蛋白质结构的研究,在今年非常火爆。但这里我们说的不是预测,而是构想。

半个世纪以来,科学家一直在寻找解决“蛋白质折叠问题”的方法。这是生物学领域的一项重大挑战,难倒了几代科学家。但现在,AI解决了这一问题。

包括美国华盛顿大学、伦斯勒理工学院和哈佛大学研究人员在内的小组,于12月份描述了一种升级的阿尔法折叠系统,其由深度思维公司开发,会“构想”出具有稳定结构的新蛋白质。研究人员向AI提供了完全随机的蛋白质结构的氨基酸序列,并向其中引入一些突变,直到AI神经网络预测到它们能将其折叠成稳定的结构为止,最终共产生了2000种全新的蛋白质序列。

全程中,科学家都没有引导AI得出特定结果,这些新的蛋白质结构完全是计算机“构想”出来的。这是AI网络在根据氨基酸序列确定蛋白质三维结构方面取得的巨大飞跃,极大地促进了人们对细胞基本结构的理解。

同样是在今年,“阿尔法折叠2”还宣布其预测的蛋白质结构能达到原子水平的准确度,这一精准的预测算法可以让蛋白质结构解析技术跟上基因组革命的发展步伐。

参考资料:http://www.stdaily.com/index/kejixinwen/2021-12/27/content_1242023.shtml

声明:化学加刊发或者转载此文只是出于传递、分享更多信息之目的,并不意味认同其观点或证实其描述。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 电话:18676881059,邮箱:gongjian@huaxuejia.cn