刘岗,男,汉族,1981年2月出生,中共党员、九三学社社员,工学博士,研究员,博士生导师。现任中国科学院金属研究所所长。
2009年7月于中国科学院金属研究所,获得博士学位,期间:2007年3月至2008年10月作为联合培养研究生在澳大利亚昆士兰大学开展研究工作。2009年7月加入金属研究所工作。
主要从事清洁能源转化用新材料与器件研究。在Nature, Joule, PNAS, Adv. Mater., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Nat. Commun., Natl. Sci. Rev., Sci. Bull.等期刊上发表论文190余篇,被SCI引用3.2万次,连续(2017-2022年)入选全球高被引学者,获授权专利33件。
主持了国家重点研发计划项目、973计划项目课题,国家自然科学基金委杰出青年科学基金项目、优秀青年科学基金项目、重点项目以及重点国际合作研究项目等十余项。入选首批国家级人才计划-青年拔尖人才,入选国家级人才计划-科技创新领军人才;获国家自然科学奖二等奖(第一完成人)、科学探索奖(新基石科学基金会)、中国青年科技奖、中国科学院青年科学家奖、全国百篇优秀博士学位论文奖等十余项学术奖励;为英国皇家化学会会士。
兼任中国材料研究学会青年工作委员会及先进陶瓷分委员会副主任、中国可再生能源学会光化学专委会副主任,Wiley出版集团MetalMat、EcoEnergy副主编。
简历:
1999.9-2003.7 吉林大学 材料物理专业 学士
2003.9-2009.5 中国科学院金属研究所 材料学 博士
2007.3-2008.10 澳大利亚昆士兰大学 联合培养
2009.7-2012.7 中国科学院金属研究所 “葛庭燧奖研金”获得者
2012.8-2014.9 中国科学院金属研究所 项目研究员
2014.10-至今 中国科学院金属研究所 研究员
研究领域:
太阳能光催化材料
新型太阳能电池
承担科研项目情况:
自2009起作为项目(课题)负责人承担了来自国家自然科学基金委青年基金、面上项目、优秀青年基金以及国际(地区)合作与交流项目,科技部973计划课题,国家高层次人才特殊支持计划,中国科学院知识创新工程重点方向性项目课题、太阳能行动计划课题以及前沿科学研究重点计划项目(拔尖青年科学家类别),英国皇家学会-牛顿高级学者基金等项目多项。同时作为项目骨干参加了国家自然科学基金委重大项目、重点项目,作为中方合作者参加了国家自然科学基金委海外及港澳学者合作研究基金(2+4年期)项目。
重要科研成果:
光催化效率是由光催化材料的光吸收、光生电荷的分离转移及表面催化等三方面的特性协同决定的,深入理解并有效调控这些特性能为设计与构建高效太阳能转换用光催化材料提供科学依据和关键支撑。以典型半导体光催化材料为研究对象,针对控制光催化材料效率的关键科学问题开展了深入的系统性研究,在实现宽光谱吸收、提升光生电荷的分离转移能力和晶面调控催化活性等方面取得了系列进展。
宽光谱吸收
致力于通过引入电子结构修饰剂(异质原子或缺陷)来增加宽带隙半导体材料的可见光吸收,从而更加充分地利用太阳光,特别关注如何通过控制修饰剂的空间分布来实现光吸收边的带对带红移。同时探索未知的具有宽谱强可见光吸收的光催化材料,且构成元素地壳储量丰富,拓展宽光谱吸收光催化材料库。
Figure 1 Homogeneous N doping in Cs0.68Ti1.83O4. The left panel: UV-visible absorption spectra of (1) homogeneous N doped Cs0.68Ti1.83O4 and (2) surface N doped TiO2. The right panel: optical photograph of Cs0.68Ti1.83O4 samples before and after homogeneous N doping. (Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates, Chem Mater 2009, 21, 1266-1274)
Figure 2 Homogeneous S doping in g-C3N4. The left panel: schematic of two lattice N sites for substitutional S in perfect graphitic carbon nitride. The right panel: a typical time course of hydrogen evolution from water containing 10 vol% triethanolamine scavenger by Pt-deposited g-C3N4 (a) and g-C3N4-xSx (b) under λ > 300 and 420 nm. (Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4, J Am Chem Soc 2010, 132, 11642-11648)
Figure 3 A red anatase TiO2 with a gradient B/N doping. The left panel: optical photograph of the prepared red TiO2 sample. The right panel: UV-visible absorption of the white TiO2 and red TiO2. (A red anatase TiO2 photocatalyst for solar energy conversion, Energy Environ Sci 2012, 5, 9603-9610)
Figure 4 Homogeneous modification with nitrogen vacancies in g-C3N4. The left panel: schematic of the two dimensional sheets of pristine g-C3N4 (melon). The right panel: UV-visible absorption spectra of g-C3N4 and g-C3N4-x (obtained by reducing g-C3N4 in a hydrogen atmosphere). (Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies, Adv Mater 2014, 26, 8046)
Figure 5 Homogeneous amorphization of g-C3N4. The left panel: schematic of the two dimensional sheets of disordered pristine g-C3N4. The right panel: UV-visible absorption spectra of g-C3N4 and amorphous C3N4 (obtained by heating g-C3N4 in an argon atmosphere). (An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation, Adv. Mater., 2015, 27, 4572)
Figure 6 α-S photocatalyst. The left panel: UV-visible absorption spectrum of α-sulfur. The inset is a photograph of the α-S crystal powder. The right panel: Applied potential bias dependence of the photocurrent generated by the photoanode of α-S crystals under UV-visible and visible light irradiation. (α-sulfur crystals as a visible light active photocatalyst, J Am Chem Soc 2012, 134, 9070-9073)
Figure 7 β-boron photocatalyst. The left panel: schematic of atomic structure of β-boron. The right panel: UV-visible absorption spectra of boron powder with and without surface amorphous layer (Visible-light-responsive β-rhombohedral boron photocatalysts, Angew Chem Int Ed 2013, 52, 6242-6245)
提升光生电荷的分离转移能力
致力于通过降低光催化材料在某一个或两个方向的尺寸至纳米量级,从而缩短光生载流子从体相扩散至表面所经历的路径,进而降低光生电子空穴的复合几率,提高光催化活性;通过选择性组合具有合适特性的组元来构筑具有优异空间电荷分离功能的异质结构。
Figure 8 g-C3N4 nanosheets. SEM images of bulk g-C3N4 and g-C3N4 nanosheets (Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv Funct Mater 2012, 22, 4763-4770)
Figure 9 Photoanode of Ta3N5 nanorod arrays. SEM image of Ta3N5 nanorod arrays supported on Ta substrate and photoelectrochemical water oxidation activity of Co(OH)x modified Ta3N5 (Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting, Chem Commun 2013, 49, 3019-3021)
Figure 10 TEM images of (a) pristine g-C3N4 and (b) porous g-C3N4 photocatalysts after loading Au particles (black particles) via a photodeposition method. The spatial distribution of Au particles on photocatalysts shows the abundance of reductive sites. Scale bars are 50 nm. (Selective breaking of hydrogen bonds of layered carbon nitride towards greatly enhanced visible light photocatalysis, Adv. Mater., 2016, 28, 6471–6477)
Figure 11 CdS/ZnS core-shell particles. The left panel: schematic of CdS-mesoporous ZnS core-shell particles with the separation of charge carriers. The middle and right panels: photocatalytic hydrogen generation with ZnS, CdS, and the core-shell particles from the aqueous solution of Na2S/Na2SO3 under visible light. (CdS-mesoporous ZnS core-shell particles for efficient and stable photocatalytic hydrogen evolution under visible light, Energy Environ Sci 2014, 7, 1895–1901)
Figure 12 TaB2/Ta2O5 core/shell particles. The left panel: schematic of a TEM image of TaB2/Ta2O5 core/shell particles with a function of promoting the separation of photoexcited electrons and holes. The right panel: band alignment of Ta2O5 referring to Fermi level of TaB2 and Pt as co-catalyst. (Constructing metallic/semiconducting TaB2/Ta2O5 core/shell heterostructure for photocatalytic hydrogen evolution, Adv Energy Mater 2014, 4, 1400057)
Figure 13 Comparison of photocatalytic hydrogen generation from mixture of water/methanol with pristine rutile TiO2 and Ti3+/Ti4+ core/shell rutile TiO2 particles after loading 1 wt% Pt co-catalyst. (Enhanced photocatalytic H2 production in core-shell engineered rutile TiO2, Adv. Mate., 2016, 28, 5850-5856)
晶面调控催化活性
致力于通过控制晶体生长过程中不同晶面的选择性暴露,实现对光催化材料的表面原子结构的有效调控,研究表面结构-光催化活性的关联规律,为基于晶面控制设计高性能光催化材料打下基础。
Figure 14 N doped anatase TiO2 crystal with dominant {001} facets. UV-visible absorption spectrum of nitrogen doped anatase TiO2 crystals with dominant {001}. The insets are optical photograph and SEM image of nitrogen doped anatase TiO2 crystals with dominant {001}. (Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN, J Am Chem Soc 2009, 131, 12868-12869)
Figure 15 Anatase TiO2 crystals with a predominance of low index facets. Schematic (A) and SEM images (B-D) of anatase TiO2 single crystals with different percentages of {001}, {101}, and {010} facets. (On the true photoreactivity order of {001}, {010} and {101} facets of anatase TiO2 crystals, Angew Chem Int Ed 2011, 50, 2133-2137)
Figure 16 {001} dominated Anatase TiO2 microspheres with tunable spatial distribution of boron. The left panel: SEM images of anatase TiO2 microsphere with nearly 100% {001} surface. The right panel: schematic of boron distribution in the microsphere before and after heating. (Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres, Adv Funct Mater 2012, 22, 3233–3238)
Figure 17 Ferroelectric field assisted selective deposition of co-catalysts on different sides of facet. (a) Schematic of single-domain & single crystalline ferroelectric material with in-built electric field; (b) SEM image of PbTiO3 nanoplates with dominant {001} facets; (c) SEM image of PbTiO3 nanoplates with a selective depositionof Au and MnOx on different sides; (d) Comparison of photocatalytic hydrogen generation between the PbTiO3 with the selective deposition of reducing co-catalyst Pt and the PbTiO3 with the nonselective deposition of reducing co-catalyst Pt. (Selective Deposition of Redox Co-catalysts to Improve the Photocatalytic Activity of Single-Domain Ferroelectric PbTiO3 Nanoplates, Chemical Communications 2014, 50, 10416 -10419)
Figure 18 Crystal facet dependent interfacial electric conductivity in faceted anatase TiO2 crystal. I-V curves along different crystallography orientations were measured by contacting one TiO2 particle with two tungsten probes in SEM microscope. (Greatly enhanced electronic conduction and lithium storage of faceted TiO2 crystals supported on metallic substrates by tuning crystallographic orientation of TiO2, Adv. Mater., 2015, 27 3507–3512)
声明:化学加刊发或者转载此文只是出于传递、分享更多信息之目的,并不意味认同其观点或证实其描述。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 电话:18676881059,邮箱:gongjian@huaxuejia.cn