DEMATEL-AHDT-WEIGHT在线计算

请选择归一化直接影响矩阵的方法 更多方法及其原理可点击查看


流程图


原始矩阵为


$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{17 \times17}} &A1 &A2 &A3 &A4 &A5 &B1 &B2 &B3 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2\\ \hline A1 &0 &2 &8 &41 &56 &4 &4 &5 &38 &7 &5 &18 &9 &11 &12 &38 &16\\ \hline A2 &4 &0 &3 &19 &39 &8 &2 &4 &16 &3 &18 &19 &6 &16 &20 &70 &41\\ \hline A3 &7 &2 &0 &5 &3 &3 &4 &2 &5 &13 &4 &0 &5 &0 &35 &11 &20\\ \hline A4 &42 &18 &2 &0 &19 &5 &3 &3 &3 &2 &3 &18 &7 &10 &6 &15 &21\\ \hline A5 &7 &3 &9 &8 &0 &4 &2 &3 &2 &5 &4 &15 &2 &17 &5 &9 &22\\ \hline B1 &16 &26 &2 &2 &19 &0 &38 &81 &36 &43 &21 &25 &17 &38 &9 &35 &4\\ \hline B2 &9 &56 &17 &4 &6 &5 &0 &43 &19 &7 &14 &35 &47 &35 &50 &47 &27\\ \hline B3 &7 &5 &5 &5 &9 &9 &13 &0 &15 &18 &8 &37 &2 &10 &60 &19 &0\\ \hline C1 &2 &3 &9 &2 &3 &2 &4 &7 &0 &8 &6 &30 &18 &11 &12 &9 &0\\ \hline C2 &1 &7 &5 &7 &7 &6 &20 &56 &12 &0 &5 &39 &22 &17 &6 &6 &9\\ \hline C3 &9 &18 &2 &5 &2 &4 &3 &7 &14 &18 &0 &25 &5 &15 &4 &38 &19\\ \hline C4 &9 &19 &5 &6 &4 &2 &3 &9 &18 &24 &38 &0 &45 &47 &3 &4 &6\\ \hline D1 &2 &35 &19 &11 &40 &43 &35 &18 &35 &20 &35 &43 &0 &19 &2 &32 &21\\ \hline D2 &3 &40 &11 &5 &9 &2 &5 &9 &7 &5 &11 &16 &38 &0 &6 &41 &0\\ \hline D3 &2 &8 &56 &6 &4 &5 &3 &4 &1 &3 &12 &17 &8 &5 &0 &1 &37\\ \hline E1 &12 &35 &1 &8 &2 &7 &5 &7 &2 &8 &9 &76 &1 &7 &7 &0 &4\\ \hline E2 &2 &9 &3 &7 &5 &3 &3 &4 &3 &6 &7 &15 &18 &9 &4 &47 &0\\ \hline \end{array} $$

决策与实验室方法部分——DEMATEL部分


规范矩阵N $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$


$$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{17 \times17}} &A1 &A2 &A3 &A4 &A5 &B1 &B2 &B3 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2\\ \hline A1 &0 &0.005 &0.019 &0.097 &0.133 &0.01 &0.01 &0.012 &0.09 &0.017 &0.012 &0.043 &0.021 &0.026 &0.029 &0.09 &0.038\\ \hline A2 &0.01 &0 &0.007 &0.045 &0.093 &0.019 &0.005 &0.01 &0.038 &0.007 &0.043 &0.045 &0.014 &0.038 &0.048 &0.166 &0.097\\ \hline A3 &0.017 &0.005 &0 &0.012 &0.007 &0.007 &0.01 &0.005 &0.012 &0.031 &0.01 &0 &0.012 &0 &0.083 &0.026 &0.048\\ \hline A4 &0.1 &0.043 &0.005 &0 &0.045 &0.012 &0.007 &0.007 &0.007 &0.005 &0.007 &0.043 &0.017 &0.024 &0.014 &0.036 &0.05\\ \hline A5 &0.017 &0.007 &0.021 &0.019 &0 &0.01 &0.005 &0.007 &0.005 &0.012 &0.01 &0.036 &0.005 &0.04 &0.012 &0.021 &0.052\\ \hline B1 &0.038 &0.062 &0.005 &0.005 &0.045 &0 &0.09 &0.192 &0.086 &0.102 &0.05 &0.059 &0.04 &0.09 &0.021 &0.083 &0.01\\ \hline B2 &0.021 &0.133 &0.04 &0.01 &0.014 &0.012 &0 &0.102 &0.045 &0.017 &0.033 &0.083 &0.112 &0.083 &0.119 &0.112 &0.064\\ \hline B3 &0.017 &0.012 &0.012 &0.012 &0.021 &0.021 &0.031 &0 &0.036 &0.043 &0.019 &0.088 &0.005 &0.024 &0.143 &0.045 &0\\ \hline C1 &0.005 &0.007 &0.021 &0.005 &0.007 &0.005 &0.01 &0.017 &0 &0.019 &0.014 &0.071 &0.043 &0.026 &0.029 &0.021 &0\\ \hline C2 &0.002 &0.017 &0.012 &0.017 &0.017 &0.014 &0.048 &0.133 &0.029 &0 &0.012 &0.093 &0.052 &0.04 &0.014 &0.014 &0.021\\ \hline C3 &0.021 &0.043 &0.005 &0.012 &0.005 &0.01 &0.007 &0.017 &0.033 &0.043 &0 &0.059 &0.012 &0.036 &0.01 &0.09 &0.045\\ \hline C4 &0.021 &0.045 &0.012 &0.014 &0.01 &0.005 &0.007 &0.021 &0.043 &0.057 &0.09 &0 &0.107 &0.112 &0.007 &0.01 &0.014\\ \hline D1 &0.005 &0.083 &0.045 &0.026 &0.095 &0.102 &0.083 &0.043 &0.083 &0.048 &0.083 &0.102 &0 &0.045 &0.005 &0.076 &0.05\\ \hline D2 &0.007 &0.095 &0.026 &0.012 &0.021 &0.005 &0.012 &0.021 &0.017 &0.012 &0.026 &0.038 &0.09 &0 &0.014 &0.097 &0\\ \hline D3 &0.005 &0.019 &0.133 &0.014 &0.01 &0.012 &0.007 &0.01 &0.002 &0.007 &0.029 &0.04 &0.019 &0.012 &0 &0.002 &0.088\\ \hline E1 &0.029 &0.083 &0.002 &0.019 &0.005 &0.017 &0.012 &0.017 &0.005 &0.019 &0.021 &0.181 &0.002 &0.017 &0.017 &0 &0.01\\ \hline E2 &0.005 &0.021 &0.007 &0.017 &0.012 &0.007 &0.007 &0.01 &0.007 &0.014 &0.017 &0.036 &0.043 &0.021 &0.01 &0.112 &0\\ \hline \end{array} $$

综合影响矩阵T $$ \begin{CD} N @>>>T \\ \end{CD} $$


  综合影响矩阵T如下

求解$T=\mathcal{N}(I-\mathcal{N})^{-1}$

$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{17 \times17}} &A1 &A2 &A3 &A4 &A5 &B1 &B2 &B3 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2\\ \hline A1 &0.028 &0.054 &0.044 &0.118 &0.163 &0.028 &0.029 &0.043 &0.118 &0.046 &0.047 &0.121 &0.063 &0.072 &0.059 &0.147 &0.077\\ \hline A2 &0.036 &0.058 &0.034 &0.069 &0.123 &0.038 &0.026 &0.043 &0.069 &0.041 &0.082 &0.138 &0.059 &0.087 &0.078 &0.232 &0.136\\ \hline A3 &0.025 &0.026 &0.019 &0.023 &0.022 &0.016 &0.02 &0.023 &0.026 &0.043 &0.026 &0.036 &0.031 &0.019 &0.097 &0.055 &0.069\\ \hline A4 &0.113 &0.076 &0.023 &0.025 &0.08 &0.026 &0.022 &0.03 &0.037 &0.027 &0.035 &0.096 &0.048 &0.058 &0.038 &0.091 &0.08\\ \hline A5 &0.027 &0.032 &0.032 &0.03 &0.016 &0.018 &0.015 &0.023 &0.021 &0.027 &0.028 &0.069 &0.028 &0.061 &0.027 &0.055 &0.069\\ \hline B1 &0.072 &0.153 &0.052 &0.045 &0.105 &0.036 &0.131 &0.26 &0.149 &0.158 &0.116 &0.206 &0.123 &0.173 &0.107 &0.202 &0.075\\ \hline B2 &0.055 &0.221 &0.094 &0.052 &0.082 &0.053 &0.042 &0.157 &0.108 &0.074 &0.107 &0.222 &0.184 &0.161 &0.184 &0.236 &0.139\\ \hline B3 &0.034 &0.057 &0.048 &0.032 &0.048 &0.037 &0.05 &0.036 &0.066 &0.071 &0.056 &0.153 &0.05 &0.068 &0.171 &0.096 &0.042\\ \hline C1 &0.016 &0.038 &0.038 &0.017 &0.027 &0.018 &0.024 &0.038 &0.022 &0.039 &0.04 &0.112 &0.071 &0.055 &0.048 &0.056 &0.023\\ \hline C2 &0.023 &0.07 &0.04 &0.038 &0.051 &0.037 &0.073 &0.169 &0.068 &0.037 &0.056 &0.168 &0.101 &0.092 &0.064 &0.082 &0.058\\ \hline C3 &0.038 &0.083 &0.022 &0.031 &0.032 &0.024 &0.024 &0.046 &0.06 &0.067 &0.032 &0.125 &0.049 &0.073 &0.035 &0.142 &0.072\\ \hline C4 &0.041 &0.104 &0.039 &0.04 &0.053 &0.032 &0.037 &0.064 &0.085 &0.091 &0.131 &0.085 &0.153 &0.157 &0.042 &0.093 &0.057\\ \hline D1 &0.044 &0.174 &0.084 &0.064 &0.15 &0.132 &0.124 &0.121 &0.146 &0.109 &0.15 &0.235 &0.084 &0.136 &0.074 &0.2 &0.118\\ \hline D2 &0.027 &0.144 &0.048 &0.036 &0.06 &0.029 &0.035 &0.053 &0.052 &0.043 &0.067 &0.118 &0.125 &0.045 &0.048 &0.164 &0.042\\ \hline D3 &0.018 &0.047 &0.145 &0.028 &0.029 &0.024 &0.021 &0.03 &0.023 &0.029 &0.051 &0.079 &0.046 &0.039 &0.028 &0.049 &0.114\\ \hline E1 &0.047 &0.123 &0.022 &0.041 &0.038 &0.032 &0.029 &0.047 &0.04 &0.05 &0.063 &0.233 &0.05 &0.067 &0.044 &0.061 &0.045\\ \hline E2 &0.02 &0.059 &0.021 &0.031 &0.034 &0.022 &0.023 &0.032 &0.03 &0.035 &0.043 &0.094 &0.069 &0.052 &0.03 &0.15 &0.024\\ \hline \end{array} $$

影响度、被影响度、中心度、原因度的求解 $$ \begin{CD} T @>>>\{D|C\}@>>>\{M|R \} \\ \end{CD} $$


求解原理


影响度 $D$ $$ D_i=\sum \limits_{j=1}^{n}{t_{ij}},(i=1,2,3,\cdots,n) $$
被影响度 $C$ $$ C_i=\sum \limits_{j=1}^{n}{t_{ji}},(i=1,2,3,\cdots,n) $$
中心度 $M$ $$ M_i=D_i+C_i $$
原因度 $ R$ $$ R_i=D_i-C_i $$

结果


影响度、被影响度、中心度、原因度

$$\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{17 \times4}} &Di &Ci &Mi &Ri\\ \hline A1 &1.258 &0.664 &1.922 &0.593\\ \hline A2 &1.349 &1.519 &2.868 &-0.17\\ \hline A3 &0.577 &0.806 &1.383 &-0.229\\ \hline A4 &0.904 &0.72 &1.625 &0.184\\ \hline A5 &0.578 &1.115 &1.693 &-0.536\\ \hline B1 &2.162 &0.603 &2.765 &1.559\\ \hline B2 &2.171 &0.725 &2.896 &1.446\\ \hline B3 &1.116 &1.215 &2.33 &-0.099\\ \hline C1 &0.682 &1.122 &1.804 &-0.44\\ \hline C2 &1.226 &0.987 &2.213 &0.239\\ \hline C3 &0.956 &1.13 &2.087 &-0.174\\ \hline C4 &1.306 &2.288 &3.594 &-0.983\\ \hline D1 &2.145 &1.334 &3.479 &0.811\\ \hline D2 &1.136 &1.416 &2.551 &-0.28\\ \hline D3 &0.802 &1.173 &1.975 &-0.371\\ \hline E1 &1.031 &2.114 &3.144 &-1.083\\ \hline E2 &0.77 &1.239 &2.009 &-0.469\\ \hline \end{array} $$

绘制图表中心度——原因度的图表


从DEMATEL到对抗哈斯图(AHDT)


偏序-序拓扑

偏序( Partial order )其实质就是序拓扑的求解

$$ \begin{CD} D=\left[ d_{ij} \right]_{n \times m}@>偏序规则>>A=\left[a_{ij} \right]_{n \times n} \\ \end{CD} $$

其中 $D=\left[ d_{ij} \right]_{n \times m}$ 为决策评价矩阵。$n$行$m$列。$n$代表评价对象(要素、方案、样本);$m$代表维度(准则、属性、目标)。

其中 $A=\left[ a_{ij} \right]_{n \times n}$ 为关系矩阵。是一个布尔方阵。$n$代表评价对象(要素、方案、样本)。

对于决策矩阵$D$中 $n$个要素的任何一列都具有严格的可比性。

偏序规则

对于含有m列的评价矩阵D,其中的任意一列即指标维度,具有同属性,可比较的前提。维度的这种优劣的比较至少有着两种属性。

数值越大越优,数值越小越差,称之为正向指标。记作p1、p2……pm。 数值越小越好,数值越大越差,称之为负向指标。记作q1、q2……qm。

对于决策矩阵$D$中的任意两行$x,y$

负向指标有 $d_{(x,p1)} \geqslant d_{(y,p1)} 且d_{(x,p2)} \geqslant d_{(y,p2)} 且 {\cdots}且d_{(x,pm)} \geqslant d_{(y,pm)}$ 同时有

正向指标有 $d_{(x,q1)} \leqslant d_{(y,q1)} 且d_{(x,q2)} \leqslant d_{(y,q2)} 且 {\cdots}且d_{(x,qm)} \leqslant d_{(y,qm)}$

符合上述规则,要素$x$与要素$y$的偏序关系记作:$x ≺ y$

$x \prec y$的意义为$y要素$优于(好于,牛逼于,帅于,猛于)$x要素$ 。

上述规则成为偏序规则。对于决策矩阵通过偏序规则可以得到关系矩阵 $A$

$$a_{xy}= \begin{cases} 1, x \prec y \\ 0, 其它 \end{cases} $$

中心度,原因度的意义

中心度,与原因度的绝对值都为正向指标,即的数值越大越重要。

任意两个要素,当其要素X的中心度的数值与原因度的绝对值同时大于另外一个要素Y则有

$Y \prec X$

从决策矩阵到关系矩阵 $$ \begin{CD} D=\left[ d_{ij} \right]_{n \times 2}@>取偏序>>A=\left[a_{ij} \right]_{n \times n} \\ \end{CD} $$


中心度,原因度绝对值组成的决策矩阵D

$$D=\begin{array}{c|c|c|c|c|c|c}{M_{17 \times2}} &M &|R|\\ \hline A1 &1.9223 &0.5934\\ \hline A2 &2.8684 &0.1696\\ \hline A3 &1.3828 &0.2288\\ \hline A4 &1.6249 &0.184\\ \hline A5 &1.693 &0.5361\\ \hline B1 &2.7649 &1.5591\\ \hline B2 &2.8956 &1.4463\\ \hline B3 &2.3301 &0.0989\\ \hline C1 &1.8038 &0.4401\\ \hline C2 &2.2133 &0.2394\\ \hline C3 &2.0866 &0.1739\\ \hline C4 &3.5941 &0.9827\\ \hline D1 &3.4789 &0.8108\\ \hline D2 &2.5512 &0.2799\\ \hline D3 &1.9749 &0.3708\\ \hline E1 &3.1442 &1.083\\ \hline E2 &2.0094 &0.4691\\ \hline \end{array} $$

关系矩阵$A$

$$A=\begin{array} {c|c|c|c|c|c|c|c}{M_{17 \times17}} &A1 &A2 &A3 &A4 &A5 &B1 &B2 &B3 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2\\ \hline A1 &1 & & & & &1 &1 & & & & &1 &1 & & &1 & \\ \hline A2 & &1 & & & & &1 & & & & &1 &1 & & &1 & \\ \hline A3 &1 & &1 & &1 &1 &1 & &1 &1 & &1 &1 &1 &1 &1 &1\\ \hline A4 &1 & & &1 &1 &1 &1 & &1 &1 & &1 &1 &1 &1 &1 &1\\ \hline A5 &1 & & & &1 &1 &1 & & & & &1 &1 & & &1 & \\ \hline B1 & & & & & &1 & & & & & & & & & & & \\ \hline B2 & & & & & & &1 & & & & & & & & & & \\ \hline B3 & &1 & & & &1 &1 &1 & & & &1 &1 &1 & &1 & \\ \hline C1 &1 & & & & &1 &1 & &1 & & &1 &1 & & &1 &1\\ \hline C2 & & & & & &1 &1 & & &1 & &1 &1 &1 & &1 & \\ \hline C3 & & & & & &1 &1 & & &1 &1 &1 &1 &1 & &1 & \\ \hline C4 & & & & & & & & & & & &1 & & & & & \\ \hline D1 & & & & & & & & & & & &1 &1 & & & & \\ \hline D2 & & & & & &1 &1 & & & & &1 &1 &1 & &1 & \\ \hline D3 & & & & & &1 &1 & & & & &1 &1 & &1 &1 &1\\ \hline E1 & & & & & & & & & & & & & & & &1 & \\ \hline E2 & & & & & &1 &1 & & & & &1 &1 & & &1 &1\\ \hline \end{array} $$

对抗哈斯图(AHDT)部分求解


关系矩阵到相乘矩阵 \begin{CD} A@>A+I>>B \\ \end{CD}


$$B=\begin{array} {c|c|c|c|c|c|c|c}{M_{17 \times17}} &A1 &A2 &A3 &A4 &A5 &B1 &B2 &B3 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2\\ \hline A1 &1 & & & & &1 &1 & & & & &1 &1 & & &1 & \\ \hline A2 & &1 & & & & &1 & & & & &1 &1 & & &1 & \\ \hline A3 &1 & &1 & &1 &1 &1 & &1 &1 & &1 &1 &1 &1 &1 &1\\ \hline A4 &1 & & &1 &1 &1 &1 & &1 &1 & &1 &1 &1 &1 &1 &1\\ \hline A5 &1 & & & &1 &1 &1 & & & & &1 &1 & & &1 & \\ \hline B1 & & & & & &1 & & & & & & & & & & & \\ \hline B2 & & & & & & &1 & & & & & & & & & & \\ \hline B3 & &1 & & & &1 &1 &1 & & & &1 &1 &1 & &1 & \\ \hline C1 &1 & & & & &1 &1 & &1 & & &1 &1 & & &1 &1\\ \hline C2 & & & & & &1 &1 & & &1 & &1 &1 &1 & &1 & \\ \hline C3 & & & & & &1 &1 & & &1 &1 &1 &1 &1 & &1 & \\ \hline C4 & & & & & & & & & & & &1 & & & & & \\ \hline D1 & & & & & & & & & & & &1 &1 & & & & \\ \hline D2 & & & & & &1 &1 & & & & &1 &1 &1 & &1 & \\ \hline D3 & & & & & &1 &1 & & & & &1 &1 & &1 &1 &1\\ \hline E1 & & & & & & & & & & & & & & & &1 & \\ \hline E2 & & & & & &1 &1 & & & & &1 &1 & & &1 &1\\ \hline \end{array} $$

相乘矩阵B到可达矩阵R \begin{CD} B@>连乘或者幂乘>>R \\ \end{CD}


可达矩阵R

$$R=\begin{array} {c|c|c|c|c|c|c|c}{M_{17 \times17}} &A1 &A2 &A3 &A4 &A5 &B1 &B2 &B3 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2\\ \hline A1 &1 & & & & &1 &1 & & & & &1 &1 & & &1 & \\ \hline A2 & &1 & & & & &1 & & & & &1 &1 & & &1 & \\ \hline A3 &1 & &1 & &1 &1 &1 & &1 &1 & &1 &1 &1 &1 &1 &1\\ \hline A4 &1 & & &1 &1 &1 &1 & &1 &1 & &1 &1 &1 &1 &1 &1\\ \hline A5 &1 & & & &1 &1 &1 & & & & &1 &1 & & &1 & \\ \hline B1 & & & & & &1 & & & & & & & & & & & \\ \hline B2 & & & & & & &1 & & & & & & & & & & \\ \hline B3 & &1 & & & &1 &1 &1 & & & &1 &1 &1 & &1 & \\ \hline C1 &1 & & & & &1 &1 & &1 & & &1 &1 & & &1 &1\\ \hline C2 & & & & & &1 &1 & & &1 & &1 &1 &1 & &1 & \\ \hline C3 & & & & & &1 &1 & & &1 &1 &1 &1 &1 & &1 & \\ \hline C4 & & & & & & & & & & & &1 & & & & & \\ \hline D1 & & & & & & & & & & & &1 &1 & & & & \\ \hline D2 & & & & & &1 &1 & & & & &1 &1 &1 & &1 & \\ \hline D3 & & & & & &1 &1 & & & & &1 &1 & &1 &1 &1\\ \hline E1 & & & & & & & & & & & & & & & &1 & \\ \hline E2 & & & & & &1 &1 & & & & &1 &1 & & &1 &1\\ \hline \end{array} $$

由可达矩阵通过对抗的抽取方式得到一对要素的层级分布 \begin{CD} R @>结果优先抽取>原因优先抽取> \frac {up型要素层级分布 }{down 型要素层级分布} \\ \end{CD}


可达矩阵R层级抽取的过程如下

结果优先——UP型抽取过程 原因优先——DOWN型抽取过程
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline A1&A1,B1,B2,C4,D1,E1&A1 \\\hline A2&A2,B2,C4,D1,E1&A2 \\\hline A3&A1,A3,A5,B1,B2,C1,C2,C4,D1,D2,D3,E1,E2&A3 \\\hline A4&A1,A4,A5,B1,B2,C1,C2,C4,D1,D2,D3,E1,E2&A4 \\\hline A5&A1,A5,B1,B2,C4,D1,E1&A5 \\\hline B1&\color{red}{\fbox{B1}}&\color{red}{\fbox{B1}} \\\hline B2&\color{red}{\fbox{B2}}&\color{red}{\fbox{B2}} \\\hline B3&A2,B1,B2,B3,C4,D1,D2,E1&B3 \\\hline C1&A1,B1,B2,C1,C4,D1,E1,E2&C1 \\\hline C2&B1,B2,C2,C4,D1,D2,E1&C2 \\\hline C3&B1,B2,C2,C3,C4,D1,D2,E1&C3 \\\hline C4&\color{red}{\fbox{C4}}&\color{red}{\fbox{C4}} \\\hline D1&C4,D1&D1 \\\hline D2&B1,B2,C4,D1,D2,E1&D2 \\\hline D3&B1,B2,C4,D1,D3,E1,E2&D3 \\\hline E1&\color{red}{\fbox{E1}}&\color{red}{\fbox{E1}} \\\hline E2&B1,B2,C4,D1,E1,E2&E2 \\\hline \end{array} $$ $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline A1&A1,A3,A4,A5,C1&A1 \\\hline A2&A2,B3&A2 \\\hline A3&\color{blue}{\fbox{A3}}&\color{blue}{\fbox{A3}} \\\hline A4&\color{blue}{\fbox{A4}}&\color{blue}{\fbox{A4}} \\\hline A5&A3,A4,A5&A5 \\\hline B1&A1,A3,A4,A5,B1,B3,C1,C2,C3,D2,D3,E2&B1 \\\hline B2&A1,A2,A3,A4,A5,B2,B3,C1,C2,C3,D2,D3,E2&B2 \\\hline B3&\color{blue}{\fbox{B3}}&\color{blue}{\fbox{B3}} \\\hline C1&A3,A4,C1&C1 \\\hline C2&A3,A4,C2,C3&C2 \\\hline C3&\color{blue}{\fbox{C3}}&\color{blue}{\fbox{C3}} \\\hline C4&A1,A2,A3,A4,A5,B3,C1,C2,C3,C4,D1,D2,D3,E2&C4 \\\hline D1&A1,A2,A3,A4,A5,B3,C1,C2,C3,D1,D2,D3,E2&D1 \\\hline D2&A3,A4,B3,C2,C3,D2&D2 \\\hline D3&A3,A4,D3&D3 \\\hline E1&A1,A2,A3,A4,A5,B3,C1,C2,C3,D2,D3,E1,E2&E1 \\\hline E2&A3,A4,C1,D3,E2&E2 \\\hline \end{array} $$
抽取出B1、B2、C4、E1放置上层,删除后剩余的情况如下 抽取出A3,A4,B3,C3放置下层,删除后剩余的情况如下
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline A1&A1,D1&A1 \\\hline A2&A2,D1&A2 \\\hline A3&A1,A3,A5,C1,C2,D1,D2,D3,E2&A3 \\\hline A4&A1,A4,A5,C1,C2,D1,D2,D3,E2&A4 \\\hline A5&A1,A5,D1&A5 \\\hline B3&A2,B3,D1,D2&B3 \\\hline C1&A1,C1,D1,E2&C1 \\\hline C2&C2,D1,D2&C2 \\\hline C3&C2,C3,D1,D2&C3 \\\hline D1&\color{red}{\fbox{D1}}&\color{red}{\fbox{D1}} \\\hline D2&D1,D2&D2 \\\hline D3&D1,D3,E2&D3 \\\hline E2&D1,E2&E2 \\\hline \end{array} $$ $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline A1&A1,A5,C1&A1 \\\hline A2&\color{blue}{\fbox{A2}}&\color{blue}{\fbox{A2}} \\\hline A5&\color{blue}{\fbox{A5}}&\color{blue}{\fbox{A5}} \\\hline B1&A1,A5,B1,C1,C2,D2,D3,E2&B1 \\\hline B2&A1,A2,A5,B2,C1,C2,D2,D3,E2&B2 \\\hline C1&\color{blue}{\fbox{C1}}&\color{blue}{\fbox{C1}} \\\hline C2&\color{blue}{\fbox{C2}}&\color{blue}{\fbox{C2}} \\\hline C4&A1,A2,A5,C1,C2,C4,D1,D2,D3,E2&C4 \\\hline D1&A1,A2,A5,C1,C2,D1,D2,D3,E2&D1 \\\hline D2&C2,D2&D2 \\\hline D3&\color{blue}{\fbox{D3}}&\color{blue}{\fbox{D3}} \\\hline E1&A1,A2,A5,C1,C2,D2,D3,E1,E2&E1 \\\hline E2&C1,D3,E2&E2 \\\hline \end{array} $$
抽取出D1放置上层,删除后剩余的情况如下 抽取出A2,A5,C1,C2,D3放置下层,删除后剩余的情况如下
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline A1&\color{red}{\fbox{A1}}&\color{red}{\fbox{A1}} \\\hline A2&\color{red}{\fbox{A2}}&\color{red}{\fbox{A2}} \\\hline A3&A1,A3,A5,C1,C2,D2,D3,E2&A3 \\\hline A4&A1,A4,A5,C1,C2,D2,D3,E2&A4 \\\hline A5&A1,A5&A5 \\\hline B3&A2,B3,D2&B3 \\\hline C1&A1,C1,E2&C1 \\\hline C2&C2,D2&C2 \\\hline C3&C2,C3,D2&C3 \\\hline D2&\color{red}{\fbox{D2}}&\color{red}{\fbox{D2}} \\\hline D3&D3,E2&D3 \\\hline E2&\color{red}{\fbox{E2}}&\color{red}{\fbox{E2}} \\\hline \end{array} $$ $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline A1&\color{blue}{\fbox{A1}}&\color{blue}{\fbox{A1}} \\\hline B1&A1,B1,D2,E2&B1 \\\hline B2&A1,B2,D2,E2&B2 \\\hline C4&A1,C4,D1,D2,E2&C4 \\\hline D1&A1,D1,D2,E2&D1 \\\hline D2&\color{blue}{\fbox{D2}}&\color{blue}{\fbox{D2}} \\\hline E1&A1,D2,E1,E2&E1 \\\hline E2&\color{blue}{\fbox{E2}}&\color{blue}{\fbox{E2}} \\\hline \end{array} $$
抽取出A1、A2、D2、E2放置上层,删除后剩余的情况如下 抽取出A1,D2,E2放置下层,删除后剩余的情况如下
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline A3&A3,A5,C1,C2,D3&A3 \\\hline A4&A4,A5,C1,C2,D3&A4 \\\hline A5&\color{red}{\fbox{A5}}&\color{red}{\fbox{A5}} \\\hline B3&\color{red}{\fbox{B3}}&\color{red}{\fbox{B3}} \\\hline C1&\color{red}{\fbox{C1}}&\color{red}{\fbox{C1}} \\\hline C2&\color{red}{\fbox{C2}}&\color{red}{\fbox{C2}} \\\hline C3&C2,C3&C3 \\\hline D3&\color{red}{\fbox{D3}}&\color{red}{\fbox{D3}} \\\hline \end{array} $$ $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline B1&\color{blue}{\fbox{B1}}&\color{blue}{\fbox{B1}} \\\hline B2&\color{blue}{\fbox{B2}}&\color{blue}{\fbox{B2}} \\\hline C4&C4,D1&C4 \\\hline D1&\color{blue}{\fbox{D1}}&\color{blue}{\fbox{D1}} \\\hline E1&\color{blue}{\fbox{E1}}&\color{blue}{\fbox{E1}} \\\hline \end{array} $$
抽取出A5、B3、C1、C2、D3放置上层,删除后剩余的情况如下 抽取出B1,B2,D1,E1放置下层,删除后剩余的情况如下
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline A3&\color{red}{\fbox{A3}}&\color{red}{\fbox{A3}} \\\hline A4&\color{red}{\fbox{A4}}&\color{red}{\fbox{A4}} \\\hline C3&\color{red}{\fbox{C3}}&\color{red}{\fbox{C3}} \\\hline \end{array} $$ $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline C4&\color{blue}{\fbox{C4}}&\color{blue}{\fbox{C4}} \\\hline \end{array} $$
抽取出A3、A4、C3放置上层,删除后剩余的情况如下 抽取出C4放置下层,删除后剩余的情况如下

抽取方式的结果如下


层级 结果优先——UP型 原因优先——DOWN型
0 B1,B2,C4,E1 C4
1 D1 B1,B2,D1,E1
2 A1,A2,D2,E2 A1,D2,E2
3 A5,B3,C1,C2,D3 A2,A5,C1,C2,D3
4 A3,A4,C3 A3,A4,B3,C3

计算一般性骨架矩阵 \begin{CD} R @>缩点运算>>R' @>缩边运算>>S' @>以最简菊花链表示回路>>S \\ \end{CD}


一般性骨架矩阵即为不缩点的情况下的最简结构,即边数最少。$S$如下

$$S=\begin{array} {c|c|c|c|c|c|c|c}{M_{17 \times17}} &A1 &A2 &A3 &A4 &A5 &B1 &B2 &B3 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2\\ \hline A1 & & & & & &1 &1 & & & & & &1 & & &1 & \\ \hline A2 & & & & & & &1 & & & & & &1 & & &1 & \\ \hline A3 & & & & &1 & & & &1 &1 & & & & &1 & & \\ \hline A4 & & & & &1 & & & &1 &1 & & & & &1 & & \\ \hline A5 &1 & & & & & & & & & & & & & & & & \\ \hline B1 & & & & & & & & & & & & & & & & & \\ \hline B2 & & & & & & & & & & & & & & & & & \\ \hline B3 & &1 & & & & & & & & & & & &1 & & & \\ \hline C1 &1 & & & & & & & & & & & & & & & &1\\ \hline C2 & & & & & & & & & & & & & &1 & & & \\ \hline C3 & & & & & & & & & &1 & & & & & & & \\ \hline C4 & & & & & & & & & & & & & & & & & \\ \hline D1 & & & & & & & & & & & &1 & & & & & \\ \hline D2 & & & & & &1 &1 & & & & & &1 & & &1 & \\ \hline D3 & & & & & & & & & & & & & & & & &1\\ \hline E1 & & & & & & & & & & & & & & & & & \\ \hline E2 & & & & & &1 &1 & & & & & &1 & & &1 & \\ \hline \end{array} $$

代入一般性骨架矩阵$S$,绘制一组含有权重的对抗层级拓扑图


UP型

B1
B2
C4
D1
E1
A1
A2
A5
E2
C1
D2
C2
D3
A3
A4
B3
C3

DOWN型

B1
B2
C4
D1
E1
A1
A2
A5
E2
C1
D2
C2
D3
A3
A4
B3
C3

权重系列求解


$$ \begin{CD} \{M|R \}@>>> d @>>>\omega \\ \end{CD} $$

  $ \{M|R \}$ 为要素的中心度与原因度

  $d$ 两者合成距离向量

  $ \omega $ 权重

求解原理


$$d = \sqrt {M^2 + R^2} $$

$$MR=\begin{array}{c|c|c|c|c|c|c}{M_{17 \times2}} &中心度 &原因度\\ \hline A1 &1.9223 &0.5934\\ \hline A2 &2.8684 &0.1696\\ \hline A3 &1.3828 &0.2288\\ \hline A4 &1.6249 &0.184\\ \hline A5 &1.693 &0.5361\\ \hline B1 &2.7649 &1.5591\\ \hline B2 &2.8956 &1.4463\\ \hline B3 &2.3301 &0.0989\\ \hline C1 &1.8038 &0.4401\\ \hline C2 &2.2133 &0.2394\\ \hline C3 &2.0866 &0.1739\\ \hline C4 &3.5941 &0.9827\\ \hline D1 &3.4789 &0.8108\\ \hline D2 &2.5512 &0.2799\\ \hline D3 &1.9749 &0.3708\\ \hline E1 &3.1442 &1.083\\ \hline E2 &2.0094 &0.4691\\ \hline \end{array} $$

向量的计算采用欧式距离公式

$$d=\begin{array}{c|c|c|c|c|c|c}{M_{17 \times1}} &向量\\ \hline A1 &2.0118\\ \hline A2 &2.8734\\ \hline A3 &1.4016\\ \hline A4 &1.6352\\ \hline A5 &1.7759\\ \hline B1 &3.1742\\ \hline B2 &3.2367\\ \hline B3 &2.3322\\ \hline C1 &1.8568\\ \hline C2 &2.2262\\ \hline C3 &2.0938\\ \hline C4 &3.726\\ \hline D1 &3.5722\\ \hline D2 &2.5665\\ \hline D3 &2.0094\\ \hline E1 &3.3255\\ \hline E2 &2.0634\\ \hline \end{array} $$

归一化求权重

$$\omega =\begin{array}{c|c|c|c|c|c|c}{M_{17 \times1}} &权重\\ \hline A1 &0.048\\ \hline A2 &0.0686\\ \hline A3 &0.0335\\ \hline A4 &0.039\\ \hline A5 &0.0424\\ \hline B1 &0.0758\\ \hline B2 &0.0773\\ \hline B3 &0.0557\\ \hline C1 &0.0443\\ \hline C2 &0.0532\\ \hline C3 &0.05\\ \hline C4 &0.089\\ \hline D1 &0.0853\\ \hline D2 &0.0613\\ \hline D3 &0.048\\ \hline E1 &0.0794\\ \hline E2 &0.0493\\ \hline \end{array} $$

归一化求子系统的权重

$$\omega =\begin{array}{c|c|c|c|c|c|c}{M_{5 \times1}} &权重\\ \hline A &0.2316\\ \hline B &0.2088\\ \hline C &0.2365\\ \hline D &0.1946\\ \hline E &0.1287\\ \hline \end{array} $$

DEMATEL-AHDT相关解释


中文全称叫:决策与实验室——对抗哈斯图技术法

对抗解释结构模型请参看论文基于对抗解释结构模型的军事训练方法可推广性评价模型

DEMATEL——决策与实验室方法。

DEMATEL-AHDT核心步骤


偏序部分一定要讲得清楚,尤其是正向指标,负向指标的意思 \begin{CD} D@>取偏序>>A \\ \end{CD}

一般性骨架矩阵的求解

DEMATEL-AHDT编程与计算难点


逆矩阵的求解,即规范化矩阵到综合影响矩阵的过程 \begin{CD} N@>N(I-N)^{-1} >>T \\ \end{CD} \begin{CD} N@>\frac {N}{(I-N)} >>T \\ \end{CD}

一般性骨架矩阵的求解 \begin{CD} R @>缩点运算>>R' @>缩边运算>>S' @>以最简菊花链表示回路增点运算>>S \\ \end{CD}

拓扑图形的拖拽

论文写作要点-原始数据的来源


其它都不是最重要的,因为只要原始数据确定了,整个计算是按部就班的。结果是确定的。因此原始矩阵O的来源最重要,而且按照这一套很难调数据的。

目前用DEMATEL跟ISM方法联用的论文90%是错的,各种错。其中算错的比例最多。而DEMATEL跟AHDT的论文没有,需要讲清楚偏序 \begin{CD} \{ M|R\}@>>>A \\ \end{CD} 这步开始

论文写作要点-对抗层级拓扑图的画法


1、一对层级拓扑图并排一起画,能形成对比,看得一目了然

2、有向边用直的,不要拐弯,不要用组织结构那种。

3、两个图边上加上一个由下至上的箭头,并在底下写原因上面写结果;或者是下面写劣上面写优。

4、活动要素标上颜色,这样人能一下子就注意到

5、回路的画法是重点,请留意回路要素的菊花链画法

6、不需要把文字丢到图里面,不用去凑字数

7、非活动要素,在两边的位置要一致。这样看活动要素看得清楚

8、层级加上,最上层最好是0层,这样显得你是写程序的

9、UP-DOWN可以改成凸——凹等等,注意一定要跟结果优先,原因优先的层级抽取对应起来。

论文写作要点-结果解释


1、活动系统还是刚性系统的解释。

2、活动系统的话,解释活动要素有那些

3、层级的话,可以分为三种类型的要素,结果要素 即是结果要素又是原因要素 ,原因要素

最上层取并集得到的就是 结果要素。

最下层取并集得到的就是原因要素

4、有多少个回路吹下水

论文写作要点-不要瞎改的字母


1、单位矩阵 $I$ 这个不要瞎搞,改成别的一看你就不专业,是抄一篇弱鸡的或者是错的论文

2、可达矩阵 $R$

3、规范化矩阵 $N$

4、综合影响矩阵$T$