DEMATEL-WAISM计算
原始矩阵为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{16 \times16}} &A1 &A2 &A3 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2 &E3 &E4\\ \hline A1 &0 &50 &31 &12 &46 &43 &34 &38 &24 &45 &23 &40 &30 &39 &18 &40\\ \hline A2 &51 &0 &43 &17 &34 &21 &30 &47 &16 &12 &4 &7 &13 &9 &42 &27\\ \hline A3 &25 &27 &0 &19 &18 &38 &27 &27 &17 &36 &22 &44 &20 &26 &9 &37\\ \hline B1 &18 &23 &38 &0 &39 &51 &34 &32 &19 &36 &42 &29 &34 &28 &16 &37\\ \hline B2 &24 &16 &14 &16 &0 &45 &45 &24 &30 &36 &28 &33 &36 &28 &22 &30\\ \hline C1 &25 &20 &26 &18 &21 &0 &36 &16 &21 &33 &25 &31 &36 &21 &28 &41\\ \hline C2 &19 &15 &23 &45 &30 &32 &0 &14 &18 &23 &29 &25 &36 &23 &34 &39\\ \hline C3 &21 &13 &24 &25 &37 &29 &27 &0 &28 &36 &32 &32 &27 &25 &30 &39\\ \hline C4 &32 &22 &30 &21 &38 &31 &31 &36 &0 &31 &28 &27 &26 &24 &26 &30\\ \hline D1 &18 &11 &29 &50 &21 &35 &50 &26 &33 &0 &31 &30 &42 &23 &31 &45\\ \hline D2 &14 &17 &24 &27 &24 &23 &27 &36 &19 &35 &0 &17 &18 &14 &35 &21\\ \hline D3 &20 &16 &19 &26 &15 &20 &23 &27 &15 &22 &29 &0 &28 &26 &27 &20\\ \hline E1 &30 &22 &30 &34 &34 &43 &34 &29 &34 &28 &32 &43 &0 &27 &41 &39\\ \hline E2 &18 &13 &20 &31 &12 &21 &14 &20 &13 &19 &11 &20 &26 &0 &23 &28\\ \hline E3 &10 &24 &15 &21 &12 &22 &10 &18 &20 &12 &28 &18 &16 &13 &0 &23\\ \hline E4 &19 &17 &27 &28 &19 &33 &22 &19 &35 &25 &20 &15 &18 &20 &31 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程 $$\begin{CD} O @>>>N \\ \end{CD} $$
- $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{16 \times16}} &A1 &A2 &A3 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2 &E3 &E4\\ \hline A1 &0 &0.098 &0.06 &0.023 &0.09 &0.084 &0.066 &0.074 &0.047 &0.088 &0.045 &0.078 &0.059 &0.076 &0.035 &0.078\\ \hline A2 &0.099 &0 &0.084 &0.033 &0.066 &0.041 &0.059 &0.092 &0.031 &0.023 &0.008 &0.014 &0.025 &0.018 &0.082 &0.053\\ \hline A3 &0.049 &0.053 &0 &0.037 &0.035 &0.074 &0.053 &0.053 &0.033 &0.07 &0.043 &0.086 &0.039 &0.051 &0.018 &0.072\\ \hline B1 &0.035 &0.045 &0.074 &0 &0.076 &0.099 &0.066 &0.062 &0.037 &0.07 &0.082 &0.057 &0.066 &0.055 &0.031 &0.072\\ \hline B2 &0.047 &0.031 &0.027 &0.031 &0 &0.088 &0.088 &0.047 &0.059 &0.07 &0.055 &0.064 &0.07 &0.055 &0.043 &0.059\\ \hline C1 &0.049 &0.039 &0.051 &0.035 &0.041 &0 &0.07 &0.031 &0.041 &0.064 &0.049 &0.06 &0.07 &0.041 &0.055 &0.08\\ \hline C2 &0.037 &0.029 &0.045 &0.088 &0.059 &0.062 &0 &0.027 &0.035 &0.045 &0.057 &0.049 &0.07 &0.045 &0.066 &0.076\\ \hline C3 &0.041 &0.025 &0.047 &0.049 &0.072 &0.057 &0.053 &0 &0.055 &0.07 &0.062 &0.062 &0.053 &0.049 &0.059 &0.076\\ \hline C4 &0.062 &0.043 &0.059 &0.041 &0.074 &0.06 &0.06 &0.07 &0 &0.06 &0.055 &0.053 &0.051 &0.047 &0.051 &0.059\\ \hline D1 &0.035 &0.021 &0.057 &0.098 &0.041 &0.068 &0.098 &0.051 &0.064 &0 &0.06 &0.059 &0.082 &0.045 &0.06 &0.088\\ \hline D2 &0.027 &0.033 &0.047 &0.053 &0.047 &0.045 &0.053 &0.07 &0.037 &0.068 &0 &0.033 &0.035 &0.027 &0.068 &0.041\\ \hline D3 &0.039 &0.031 &0.037 &0.051 &0.029 &0.039 &0.045 &0.053 &0.029 &0.043 &0.057 &0 &0.055 &0.051 &0.053 &0.039\\ \hline E1 &0.059 &0.043 &0.059 &0.066 &0.066 &0.084 &0.066 &0.057 &0.066 &0.055 &0.062 &0.084 &0 &0.053 &0.08 &0.076\\ \hline E2 &0.035 &0.025 &0.039 &0.06 &0.023 &0.041 &0.027 &0.039 &0.025 &0.037 &0.021 &0.039 &0.051 &0 &0.045 &0.055\\ \hline E3 &0.02 &0.047 &0.029 &0.041 &0.023 &0.043 &0.02 &0.035 &0.039 &0.023 &0.055 &0.035 &0.031 &0.025 &0 &0.045\\ \hline E4 &0.037 &0.033 &0.053 &0.055 &0.037 &0.064 &0.043 &0.037 &0.068 &0.049 &0.039 &0.029 &0.035 &0.039 &0.06 &0\\ \hline \end{array} $$
综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{16 \times16}} &A1 &A2 &A3 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2 &E3 &E4\\ \hline A1 &0.189 &0.257 &0.271 &0.242 &0.299 &0.343 &0.307 &0.288 &0.237 &0.316 &0.255 &0.299 &0.281 &0.262 &0.263 &0.345\\ \hline A2 &0.233 &0.129 &0.238 &0.191 &0.226 &0.24 &0.237 &0.249 &0.174 &0.201 &0.169 &0.186 &0.193 &0.162 &0.244 &0.254\\ \hline A3 &0.191 &0.179 &0.166 &0.206 &0.201 &0.274 &0.239 &0.219 &0.181 &0.248 &0.207 &0.255 &0.213 &0.197 &0.195 &0.278\\ \hline B1 &0.208 &0.198 &0.269 &0.205 &0.273 &0.341 &0.292 &0.262 &0.216 &0.287 &0.278 &0.266 &0.274 &0.231 &0.244 &0.322\\ \hline B2 &0.202 &0.171 &0.207 &0.217 &0.182 &0.306 &0.288 &0.228 &0.218 &0.264 &0.234 &0.252 &0.258 &0.214 &0.235 &0.285\\ \hline C1 &0.193 &0.169 &0.216 &0.207 &0.208 &0.209 &0.257 &0.202 &0.191 &0.245 &0.215 &0.235 &0.243 &0.19 &0.231 &0.288\\ \hline C2 &0.183 &0.162 &0.214 &0.256 &0.228 &0.273 &0.194 &0.201 &0.188 &0.231 &0.226 &0.227 &0.246 &0.196 &0.244 &0.288\\ \hline C3 &0.194 &0.164 &0.222 &0.229 &0.247 &0.276 &0.254 &0.182 &0.213 &0.263 &0.239 &0.248 &0.239 &0.206 &0.245 &0.297\\ \hline C4 &0.219 &0.185 &0.238 &0.226 &0.255 &0.285 &0.267 &0.253 &0.165 &0.26 &0.236 &0.245 &0.242 &0.209 &0.243 &0.288\\ \hline D1 &0.207 &0.177 &0.254 &0.297 &0.242 &0.315 &0.318 &0.251 &0.241 &0.221 &0.261 &0.268 &0.288 &0.222 &0.27 &0.336\\ \hline D2 &0.156 &0.148 &0.194 &0.203 &0.195 &0.229 &0.22 &0.218 &0.17 &0.228 &0.151 &0.19 &0.192 &0.16 &0.223 &0.229\\ \hline D3 &0.16 &0.141 &0.177 &0.193 &0.171 &0.213 &0.203 &0.195 &0.155 &0.196 &0.196 &0.149 &0.2 &0.174 &0.201 &0.217\\ \hline E1 &0.235 &0.204 &0.262 &0.273 &0.271 &0.336 &0.298 &0.265 &0.248 &0.28 &0.268 &0.298 &0.219 &0.236 &0.295 &0.333\\ \hline E2 &0.142 &0.122 &0.162 &0.184 &0.149 &0.195 &0.168 &0.164 &0.137 &0.172 &0.147 &0.17 &0.179 &0.112 &0.174 &0.21\\ \hline E3 &0.117 &0.132 &0.141 &0.152 &0.136 &0.179 &0.146 &0.149 &0.137 &0.145 &0.163 &0.15 &0.146 &0.123 &0.119 &0.183\\ \hline E4 &0.165 &0.148 &0.198 &0.202 &0.185 &0.245 &0.209 &0.187 &0.197 &0.209 &0.186 &0.185 &0.19 &0.17 &0.213 &0.188\\ \hline \end{array} $$
截距阵的计算过程 \begin{CD} T@>\lambda 截距阵>>A \\ \end{CD}
$\lambda$ 截距
$\lambda $为0到1之间的一个数。
对于综合矩阵有$T=[t_{ij}]_{n \times n}$;关系矩阵$A=[a_{ij}]_{n \times n}$
其转化为: $$a_{ij}= \begin{cases} 1, t_{ij} \geq \lambda \\ 0, t_{ij} < \lambda \end{cases} $$
$\lambda $ 有意义并且能自圆其说是关键
目前比较好吹牛的是用下面一个方法:
对综合矩阵求平均数得出一个值$ \bar{x} $,求标准差得到一个值$\sigma $.
$\lambda = \bar{x} + \sigma $
$ \bar{x} = $ 0.21977525636069
综合矩阵为$n$阶方阵,总体标准差的公式$\sigma=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2} } $.
$ \sigma = $ 0.049078986978477
$\lambda=$ 0.26885424333917
$$A=\begin{array} {c|c|c|c|c|c|c|c}{M_{16 \times16}} &A1 &A2 &A3 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2 &E3 &E4\\ \hline A1 & & &1 & &1 &1 &1 &1 & &1 & &1 &1 & & &1\\ \hline A2 & & & & & & & & & & & & & & & & \\ \hline A3 & & & & & &1 & & & & & & & & & &1\\ \hline B1 & & &1 & &1 &1 &1 & & &1 &1 & &1 & & &1\\ \hline B2 & & & & & &1 &1 & & & & & & & & &1\\ \hline C1 & & & & & & & & & & & & & & & &1\\ \hline C2 & & & & & &1 & & & & & & & & & &1\\ \hline C3 & & & & & &1 & & & & & & & & & &1\\ \hline C4 & & & & & &1 & & & & & & & & & &1\\ \hline D1 & & & &1 & &1 &1 & & & & & &1 & &1 &1\\ \hline D2 & & & & & & & & & & & & & & & & \\ \hline D3 & & & & & & & & & & & & & & & & \\ \hline E1 & & & &1 &1 &1 &1 & & &1 & &1 & & &1 &1\\ \hline E2 & & & & & & & & & & & & & & & & \\ \hline E3 & & & & & & & & & & & & & & & & \\ \hline E4 & & & & & & & & & & & & & & & & \\ \hline \end{array} $$对于关系矩阵$A$ 注意其主对角线上的值可能为1
关系矩阵到相乘矩阵 \begin{CD} A@>A+I>>B \\ \end{CD}
相乘矩阵B
即加上单位矩阵$I$,即关系矩阵主对角线全部变成1
$$B=\begin{array} {c|c|c|c|c|c|c|c}{M_{16 \times16}} &A1 &A2 &A3 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2 &E3 &E4\\ \hline A1 &1 & &1 & &1 &1 &1 &1 & &1 & &1 &1 & & &1\\ \hline A2 & &1 & & & & & & & & & & & & & & \\ \hline A3 & & &1 & & &1 & & & & & & & & & &1\\ \hline B1 & & &1 &1 &1 &1 &1 & & &1 &1 & &1 & & &1\\ \hline B2 & & & & &1 &1 &1 & & & & & & & & &1\\ \hline C1 & & & & & &1 & & & & & & & & & &1\\ \hline C2 & & & & & &1 &1 & & & & & & & & &1\\ \hline C3 & & & & & &1 & &1 & & & & & & & &1\\ \hline C4 & & & & & &1 & & &1 & & & & & & &1\\ \hline D1 & & & &1 & &1 &1 & & &1 & & &1 & &1 &1\\ \hline D2 & & & & & & & & & & &1 & & & & & \\ \hline D3 & & & & & & & & & & & &1 & & & & \\ \hline E1 & & & &1 &1 &1 &1 & & &1 & &1 &1 & &1 &1\\ \hline E2 & & & & & & & & & & & & & &1 & & \\ \hline E3 & & & & & & & & & & & & & & &1 & \\ \hline E4 & & & & & & & & & & & & & & & &1\\ \hline \end{array} $$相乘矩阵到可达矩阵 \begin{CD} B @>>>R \\ \end{CD}
可达矩阵R
$$R=\begin{array} {c|c|c|c|c|c|c|c}{M_{16 \times16}} &A1 &A2 &A3 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2 &E3 &E4\\ \hline A1 &1 & &1 &1 &1 &1 &1 &1 & &1 &1 &1 &1 & &1 &1\\ \hline A2 & &1 & & & & & & & & & & & & & & \\ \hline A3 & & &1 & & &1 & & & & & & & & & &1\\ \hline B1 & & &1 &1 &1 &1 &1 & & &1 &1 &1 &1 & &1 &1\\ \hline B2 & & & & &1 &1 &1 & & & & & & & & &1\\ \hline C1 & & & & & &1 & & & & & & & & & &1\\ \hline C2 & & & & & &1 &1 & & & & & & & & &1\\ \hline C3 & & & & & &1 & &1 & & & & & & & &1\\ \hline C4 & & & & & &1 & & &1 & & & & & & &1\\ \hline D1 & & &1 &1 &1 &1 &1 & & &1 &1 &1 &1 & &1 &1\\ \hline D2 & & & & & & & & & & &1 & & & & & \\ \hline D3 & & & & & & & & & & & &1 & & & & \\ \hline E1 & & &1 &1 &1 &1 &1 & & &1 &1 &1 &1 & &1 &1\\ \hline E2 & & & & & & & & & & & & & &1 & & \\ \hline E3 & & & & & & & & & & & & & & &1 & \\ \hline E4 & & & & & & & & & & & & & & & &1\\ \hline \end{array} $$由可达矩阵通过对抗的抽取方式得到一对要素的层级分布 \begin{CD} R @>结果优先抽取>原因优先抽取> \frac {up型要素层级分布 }{down 型要素层级分布} \\ \end{CD}
可达矩阵R层级抽取的过程如下
结果优先——UP型抽取过程 | 原因优先——DOWN型抽取过程 |
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline A1&A1,A3,B1,B2,C1,C2,C3,D1,D2,D3,E1,E3,E4&A1 \\\hline A2&\color{red}{\fbox{A2}}&\color{red}{\fbox{A2}} \\\hline A3&A3,C1,E4&A3 \\\hline B1&A3,B1,B2,C1,C2,D1,D2,D3,E1,E3,E4&B1,D1,E1 \\\hline B2&B2,C1,C2,E4&B2 \\\hline C1&C1,E4&C1 \\\hline C2&C1,C2,E4&C2 \\\hline C3&C1,C3,E4&C3 \\\hline C4&C1,C4,E4&C4 \\\hline D1&A3,B1,B2,C1,C2,D1,D2,D3,E1,E3,E4&B1,D1,E1 \\\hline D2&\color{red}{\fbox{D2}}&\color{red}{\fbox{D2}} \\\hline D3&\color{red}{\fbox{D3}}&\color{red}{\fbox{D3}} \\\hline E1&A3,B1,B2,C1,C2,D1,D2,D3,E1,E3,E4&B1,D1,E1 \\\hline E2&\color{red}{\fbox{E2}}&\color{red}{\fbox{E2}} \\\hline E3&\color{red}{\fbox{E3}}&\color{red}{\fbox{E3}} \\\hline E4&\color{red}{\fbox{E4}}&\color{red}{\fbox{E4}} \\\hline \end{array} $$ | $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline A1&\color{blue}{\fbox{A1}}&\color{blue}{\fbox{A1}} \\\hline A2&\color{blue}{\fbox{A2}}&\color{blue}{\fbox{A2}} \\\hline A3&A1,A3,B1,D1,E1&A3 \\\hline B1&A1,B1,D1,E1&B1,D1,E1 \\\hline B2&A1,B1,B2,D1,E1&B2 \\\hline C1&A1,A3,B1,B2,C1,C2,C3,C4,D1,E1&C1 \\\hline C2&A1,B1,B2,C2,D1,E1&C2 \\\hline C3&A1,C3&C3 \\\hline C4&\color{blue}{\fbox{C4}}&\color{blue}{\fbox{C4}} \\\hline D1&A1,B1,D1,E1&B1,D1,E1 \\\hline D2&A1,B1,D1,D2,E1&D2 \\\hline D3&A1,B1,D1,D3,E1&D3 \\\hline E1&A1,B1,D1,E1&B1,D1,E1 \\\hline E2&\color{blue}{\fbox{E2}}&\color{blue}{\fbox{E2}} \\\hline E3&A1,B1,D1,E1,E3&E3 \\\hline E4&A1,A3,B1,B2,C1,C2,C3,C4,D1,E1,E4&E4 \\\hline \end{array} $$ |
抽取出A2、D2、D3、E2、E3、E4放置上层,删除后剩余的情况如下 | 抽取出A1,A2,C4,E2放置下层,删除后剩余的情况如下 |
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline A1&A1,A3,B1,B2,C1,C2,C3,D1,E1&A1 \\\hline A3&A3,C1&A3 \\\hline B1&A3,B1,B2,C1,C2,D1,E1&B1,D1,E1 \\\hline B2&B2,C1,C2&B2 \\\hline C1&\color{red}{\fbox{C1}}&\color{red}{\fbox{C1}} \\\hline C2&C1,C2&C2 \\\hline C3&C1,C3&C3 \\\hline C4&C1,C4&C4 \\\hline D1&A3,B1,B2,C1,C2,D1,E1&B1,D1,E1 \\\hline E1&A3,B1,B2,C1,C2,D1,E1&B1,D1,E1 \\\hline \end{array} $$ | $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline A3&A3,B1,D1,E1&A3 \\\hline B1&\color{blue}{\fbox{B1,D1,E1}}&\color{blue}{\fbox{B1,D1,E1}} \\\hline B2&B1,B2,D1,E1&B2 \\\hline C1&A3,B1,B2,C1,C2,C3,D1,E1&C1 \\\hline C2&B1,B2,C2,D1,E1&C2 \\\hline C3&\color{blue}{\fbox{C3}}&\color{blue}{\fbox{C3}} \\\hline D1&\color{blue}{\fbox{B1,D1,E1}}&\color{blue}{\fbox{B1,D1,E1}} \\\hline D2&B1,D1,D2,E1&D2 \\\hline D3&B1,D1,D3,E1&D3 \\\hline E1&\color{blue}{\fbox{B1,D1,E1}}&\color{blue}{\fbox{B1,D1,E1}} \\\hline E3&B1,D1,E1,E3&E3 \\\hline E4&A3,B1,B2,C1,C2,C3,D1,E1,E4&E4 \\\hline \end{array} $$ |
抽取出C1放置上层,删除后剩余的情况如下 | 抽取出B1,C3,D1,E1放置下层,删除后剩余的情况如下 |
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline A1&A1,A3,B1,B2,C2,C3,D1,E1&A1 \\\hline A3&\color{red}{\fbox{A3}}&\color{red}{\fbox{A3}} \\\hline B1&A3,B1,B2,C2,D1,E1&B1,D1,E1 \\\hline B2&B2,C2&B2 \\\hline C2&\color{red}{\fbox{C2}}&\color{red}{\fbox{C2}} \\\hline C3&\color{red}{\fbox{C3}}&\color{red}{\fbox{C3}} \\\hline C4&\color{red}{\fbox{C4}}&\color{red}{\fbox{C4}} \\\hline D1&A3,B1,B2,C2,D1,E1&B1,D1,E1 \\\hline E1&A3,B1,B2,C2,D1,E1&B1,D1,E1 \\\hline \end{array} $$ | $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline A3&\color{blue}{\fbox{A3}}&\color{blue}{\fbox{A3}} \\\hline B2&\color{blue}{\fbox{B2}}&\color{blue}{\fbox{B2}} \\\hline C1&A3,B2,C1,C2&C1 \\\hline C2&B2,C2&C2 \\\hline D2&\color{blue}{\fbox{D2}}&\color{blue}{\fbox{D2}} \\\hline D3&\color{blue}{\fbox{D3}}&\color{blue}{\fbox{D3}} \\\hline E3&\color{blue}{\fbox{E3}}&\color{blue}{\fbox{E3}} \\\hline E4&A3,B2,C1,C2,E4&E4 \\\hline \end{array} $$ |
抽取出A3、C2、C3、C4放置上层,删除后剩余的情况如下 | 抽取出A3,B2,D2,D3,E3放置下层,删除后剩余的情况如下 |
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline A1&A1,B1,B2,D1,E1&A1 \\\hline B1&B1,B2,D1,E1&B1,D1,E1 \\\hline B2&\color{red}{\fbox{B2}}&\color{red}{\fbox{B2}} \\\hline D1&B1,B2,D1,E1&B1,D1,E1 \\\hline E1&B1,B2,D1,E1&B1,D1,E1 \\\hline \end{array} $$ | $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline C1&C1,C2&C1 \\\hline C2&\color{blue}{\fbox{C2}}&\color{blue}{\fbox{C2}} \\\hline E4&C1,C2,E4&E4 \\\hline \end{array} $$ |
抽取出B2放置上层,删除后剩余的情况如下 | 抽取出C2放置下层,删除后剩余的情况如下 |
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline A1&A1,B1,D1,E1&A1 \\\hline B1&\color{red}{\fbox{B1,D1,E1}}&\color{red}{\fbox{B1,D1,E1}} \\\hline D1&\color{red}{\fbox{B1,D1,E1}}&\color{red}{\fbox{B1,D1,E1}} \\\hline E1&\color{red}{\fbox{B1,D1,E1}}&\color{red}{\fbox{B1,D1,E1}} \\\hline \end{array} $$ | $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline C1&\color{blue}{\fbox{C1}}&\color{blue}{\fbox{C1}} \\\hline E4&C1,E4&E4 \\\hline \end{array} $$ |
抽取出B1、D1、E1放置上层,删除后剩余的情况如下 | 抽取出C1放置下层,删除后剩余的情况如下 |
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline A1&\color{red}{\fbox{A1}}&\color{red}{\fbox{A1}} \\\hline \end{array} $$ | $$\begin{array} {c|c|c|c|c|c|c|c}{} &Q_{e} & T_{e} \\\hline E4&\color{blue}{\fbox{E4}}&\color{blue}{\fbox{E4}} \\\hline \end{array} $$ |
抽取出A1放置上层,删除后剩余的情况如下 | 抽取出E4放置下层,删除后剩余的情况如下 |
抽取方式的结果如下
层级 | 结果优先——UP型 | 原因优先——DOWN型 |
第0层 | A2,D2,D3,E2,E3,E4 | E4 |
第1层 | C1 | C1 |
第2层 | A3,C2,C3,C4 | C2 |
第3层 | B2 | A3,B2,D2,D3,E3 |
第4层 | B1,D1,E1 | B1,C3,D1,E1 |
第5层 | A1 | A1,A2,C4,E2 |
计算一般性骨架矩阵 \begin{CD} R @>缩点运算>>R' @>缩边运算>>S' @>以最简菊花链表示回路>>S \\ \end{CD}
可达矩阵 $R$的缩点矩阵 $R'$如下:
$$R'=\begin{array} {c|c|c|c|c|c|c|c}{M_{14 \times14}} &A1 &A2 &A3 &B1+D1+E1 &B2 &C1 &C2 &C3 &C4 &D2 &D3 &E2 &E3 &E4\\ \hline A1 &1 & &1 &1 &1 &1 &1 &1 & &1 &1 & &1 &1\\ \hline A2 & &1 & & & & & & & & & & & & \\ \hline A3 & & &1 & & &1 & & & & & & & &1\\ \hline B1+D1+E1 & & &1 &1 &1 &1 &1 & & &1 &1 & &1 &1\\ \hline B2 & & & & &1 &1 &1 & & & & & & &1\\ \hline C1 & & & & & &1 & & & & & & & &1\\ \hline C2 & & & & & &1 &1 & & & & & & &1\\ \hline C3 & & & & & &1 & &1 & & & & & &1\\ \hline C4 & & & & & &1 & & &1 & & & & &1\\ \hline D2 & & & & & & & & & &1 & & & & \\ \hline D3 & & & & & & & & & & &1 & & & \\ \hline E2 & & & & & & & & & & & &1 & & \\ \hline E3 & & & & & & & & & & & & &1 & \\ \hline E4 & & & & & & & & & & & & & &1\\ \hline \end{array} $$$R'$的缩边矩阵$S'=R'-(R'-I)^2-I $ 骨架矩阵$S'$如下:
$$S'=\begin{array} {c|c|c|c|c|c|c|c}{M_{14 \times14}} &A1 &A2 &A3 &B1+D1+E1 &B2 &C1 &C2 &C3 &C4 &D2 &D3 &E2 &E3 &E4\\ \hline A1 & & & &1 & & & &1 & & & & & & \\ \hline A2 & & & & & & & & & & & & & & \\ \hline A3 & & & & & &1 & & & & & & & & \\ \hline B1+D1+E1 & & &1 & &1 & & & & &1 &1 & &1 & \\ \hline B2 & & & & & & &1 & & & & & & & \\ \hline C1 & & & & & & & & & & & & & &1\\ \hline C2 & & & & & &1 & & & & & & & & \\ \hline C3 & & & & & &1 & & & & & & & & \\ \hline C4 & & & & & &1 & & & & & & & & \\ \hline D2 & & & & & & & & & & & & & & \\ \hline D3 & & & & & & & & & & & & & & \\ \hline E2 & & & & & & & & & & & & & & \\ \hline E3 & & & & & & & & & & & & & & \\ \hline E4 & & & & & & & & & & & & & & \\ \hline \end{array} $$一般性骨架矩阵即为不缩点的情况下的最简结构,即边数最少。$S$如下
$$S=\begin{array} {c|c|c|c|c|c|c|c}{M_{16 \times16}} &A1 &A2 &A3 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2 &E3 &E4\\ \hline A1 & & & & & & & &1 & &1 & & & & & & \\ \hline A2 & & & & & & & & & & & & & & & & \\ \hline A3 & & & & & &1 & & & & & & & & & & \\ \hline B1 & & &1 & &1 & & & & &1 &1 & & & & & \\ \hline B2 & & & & & & &1 & & & & & & & & & \\ \hline C1 & & & & & & & & & & & & & & & &1\\ \hline C2 & & & & & &1 & & & & & & & & & & \\ \hline C3 & & & & & &1 & & & & & & & & & & \\ \hline C4 & & & & & &1 & & & & & & & & & & \\ \hline D1 & & & & & & & & & & & & &1 & &1 & \\ \hline D2 & & & & & & & & & & & & & & & & \\ \hline D3 & & & & & & & & & & & & & & & & \\ \hline E1 & & & &1 & & & & & & & &1 & & & & \\ \hline E2 & & & & & & & & & & & & & & & & \\ \hline E3 & & & & & & & & & & & & & & & & \\ \hline E4 & & & & & & & & & & & & & & & & \\ \hline \end{array} $$含权值的矩阵 \begin{CD} S @>代入综合影响矩阵T中对应的值>>TS@>回路内部的有向边进行标注>>WS \\ \end{CD}
$TS$如下:
$$TS=\begin{array}{c|c|c|c|c|c|c}{M_{16 \times16}} &A1 &A2 &A3 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2 &E3 &E4\\ \hline A1 &0 &0 &0.2713 &0 &0.2993 &0.3427 &0.3073 &0.2885 &0 &0.3159 &0 &0.2986 &0.2813 &0 &0 &0.3446\\ \hline A2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline A3 &0 &0 &0 &0 &0 &0.2744 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.2782\\ \hline B1 &0 &0 &0.2694 &0 &0.2725 &0.3413 &0.2917 &0 &0 &0.2873 &0.2776 &0 &0.2743 &0 &0 &0.3222\\ \hline B2 &0 &0 &0 &0 &0 &0.3056 &0.288 &0 &0 &0 &0 &0 &0 &0 &0 &0.2852\\ \hline C1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.2878\\ \hline C2 &0 &0 &0 &0 &0 &0.2728 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.2876\\ \hline C3 &0 &0 &0 &0 &0 &0.2756 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.2971\\ \hline C4 &0 &0 &0 &0 &0 &0.2853 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.2883\\ \hline D1 &0 &0 &0 &0.2969 &0 &0.3145 &0.3178 &0 &0 &0 &0 &0 &0.2882 &0 &0.2699 &0.3361\\ \hline D2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline D3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline E1 &0 &0 &0 &0.2731 &0.2715 &0.3355 &0.2977 &0 &0 &0.28 &0 &0.2975 &0 &0 &0.2948 &0.3335\\ \hline E2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline E3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline E4 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline \end{array} $$$WS$如下:
$$WS=\begin{array}{c|c|c|c|c|c|c}{M_{16 \times16}} &A1 &A2 &A3 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3 &E1 &E2 &E3 &E4\\ \hline A1 &0 &0 &0.2713 &0 &0.2993 &0.3427 &0.3073 &0.2885 &0 &0.3159 &0 &0.2986 &0.2813 &0 &0 &0.3446\\ \hline A2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline A3 &0 &0 &0 &0 &0 &0.2744 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.2782\\ \hline B1 &0 &0 &0.2694 &0 &0.2725 &0.3413 &0.2917 &0 &0 &1 &0.2776 &0 &1 &0 &0 &0.3222\\ \hline B2 &0 &0 &0 &0 &0 &0.3056 &0.288 &0 &0 &0 &0 &0 &0 &0 &0 &0.2852\\ \hline C1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.2878\\ \hline C2 &0 &0 &0 &0 &0 &0.2728 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.2876\\ \hline C3 &0 &0 &0 &0 &0 &0.2756 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.2971\\ \hline C4 &0 &0 &0 &0 &0 &0.2853 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.2883\\ \hline D1 &0 &0 &0 &1 &0 &0.3145 &0.3178 &0 &0 &0 &0 &0 &1 &0 &0.2699 &0.3361\\ \hline D2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline D3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline E1 &0 &0 &0 &1 &0.2715 &0.3355 &0.2977 &0 &0 &1 &0 &0.2975 &0 &0 &0.2948 &0.3335\\ \hline E2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline E3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline E4 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline \end{array} $$代入含权值的一般性骨架矩阵WS,绘制一组含有权重的对抗层级拓扑图
由综合影响矩阵求影响度、被影响度、中心度、原因度 \begin{CD} T @>>>\{D|C|M|R \} \\ \end{CD}
影响度、被影响度、中心度与原因度是四种度量要素在系统里影响程度的度量值。都是根据综合影响矩阵计算得出。
求解原理
影响度 $D$ | $$ D_i=\sum \limits_{j=1}^{n}{t_{ij}},(i=1,2,3,\cdots,n) $$ |
被影响度 $C$ | $$ C_i=\sum \limits_{j=1}^{n}{t_{ji}},(i=1,2,3,\cdots,n) $$ |
中心度 $M$ | $$ M_i=D_i+C_i $$ |
原因度 $ R$ | $$ R_i=D_i-C_i $$ |
结果
影响度、被影响度、中心度、原因度
$$\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{16 \times4}} &Di &Ci &Mi &Ri\\ \hline A1 &4.455 &2.993 &7.448 &1.462\\ \hline A2 &3.325 &2.686 &6.011 &0.639\\ \hline A3 &3.45 &3.431 &6.881 &0.019\\ \hline B1 &4.166 &3.483 &7.649 &0.683\\ \hline B2 &3.76 &3.471 &7.231 &0.289\\ \hline C1 &3.498 &4.256 &7.753 &-0.758\\ \hline C2 &3.557 &3.895 &7.453 &-0.338\\ \hline C3 &3.716 &3.514 &7.23 &0.202\\ \hline C4 &3.816 &3.068 &6.884 &0.749\\ \hline D1 &4.167 &3.767 &7.934 &0.4\\ \hline D2 &3.106 &3.43 &6.536 &-0.324\\ \hline D3 &2.941 &3.622 &6.564 &-0.681\\ \hline E1 &4.32 &3.603 &7.924 &0.717\\ \hline E2 &2.586 &3.063 &5.649 &-0.477\\ \hline E3 &2.319 &3.639 &5.958 &-1.319\\ \hline E4 &3.079 &4.342 &7.42 &-1.263\\ \hline \end{array} $$
绘制中心度与原因度建构的图表
DEMATEL-WAISM相关解释
中文全称叫:决策与实验室——权值对抗解释结构模型法
对抗解释结构模型请参看论文基于对抗解释结构模型的军事训练方法可推广性评价模型
权值对抗解释结构模型——在非回路的有向边上加上了权值。
DEMATEL——决策与实验室方法。
DEMATEL-WAISM核心步骤
给出一个能自圆其说的截距 \begin{CD} T@>\lambda >>A \\ \end{CD}
带权值的一般性骨架矩阵的求解 \begin{CD} S @>代入T>>TS@>回路标注>>WS \\ \end{CD}
DEMATEL-WAISM编程与计算难点
逆矩阵的求解,即规范化矩阵到综合影响矩阵的过程 \begin{CD} N@>N(I-N)^{-1} >>T \\ \end{CD} \begin{CD} N@>\frac {N}{(I-N)} >>T \\ \end{CD}
一般性骨架矩阵的求解 \begin{CD} R @>缩点运算>>R' @>缩边运算>>S' @>以最简菊花链表示回路增点运算>>S \\ \end{CD}
拓扑图形的拖拽
论文写作要点-简洁流程图的表示方法
方式一: \begin{CD} O@>>>……@>>>T @>>>A @>>>WAISM层级拓扑图 \\ \end{CD}
方式二: \begin{CD} O@>>>N@>>>T @>>>A @>WAISM处理步骤>>带权值的对抗层级拓扑图 \\ \end{CD}
方式三: \begin{CD} O@>>>N@>>>T \begin{cases} \Longrightarrow A \Longrightarrow 带权值的对抗层级拓扑图, WAISM方法 \\ \Longrightarrow原因度、中心度笛卡尔坐标分布, DEMATEL方法 \end{cases}\\ \end{CD}
上述任何书写流程中最核心的步骤为: \begin{CD} T@>\lambda 截距>>A \\ \end{CD}
论文写作要点-原始数据的来源
其它都不是最重要的,因为只要原始数据确定了,整个计算是按部就班的。结果是确定的。因此原始矩阵O的来源最重要,而且按照这一套很难调数据的。
目前用DEMATEL跟ISM方法联用的论文90%是错的,各种错。其中算错的比例最多。尤其是 \begin{CD} T@>>>A \\ \end{CD} 这步开始
论文写作要点-对抗层级拓扑图的画法
1、一对层级拓扑图并排一起画,能形成对比,看得一目了然
2、有向边用直的,不要拐弯,不要用组织结构那种。
3、两个图边上加上一个由下至上的箭头,并在底下写原因上面写结果;或者是下面写劣上面写优。
4、活动要素标上颜色,这样人能一下子就注意到
5、回路的画法是重点,请留意回路要素的菊花链画法
6、不需要把文字丢到图里面,不用去凑字数
7、非活动要素,在两边的位置要一致。这样看活动要素看得清楚
8、层级加上,最上层最好是0层,这样显得你是写程序的
9、UP-DOWN可以改成凸——凹等等,注意一定要跟结果优先,原因优先的层级抽取对应起来。
论文写作要点-结果解释
1、活动系统还是刚性系统的解释。
2、活动系统的话,解释活动要素有那些
3、层级的话,可以分为三种类型的要素,结果要素 即是结果要素又是原因要素 ,原因要素
最上层取并集得到的就是 结果要素。
最下层取并集得到的就是原因要素
4、有多少个回路吹下水
论文写作要点-不要瞎改的字母
1、单位矩阵 $I$ 这个不要瞎搞,改成别的一看你就不专业,是抄一篇弱鸡的或者是错的论文
2、可达矩阵 $R$
3、规范化矩阵 $N$
4、综合影响矩阵$T$
5、$\lambda = \bar{x} + \sigma$ 这三个字母是固定用法,不要变。