解释结构模型方法在线演算


论文写作或者计算需要帮助可发邮件到 hwstu # sohu.com 把 #替换成@,请说清来意,不必拐弯抹角,浪费相互之间的时间。

返回首页

☆☆☆☆☆距离(distance)、相似性(similarity)、向量范数(norm)


此处输入要素的个数


你没有输入参数,本处随机给出一个


$$Ori\_matrix=\begin{array} {c|ccccccc}{M_{20 \times20}} &子 &丑 &寅 &卯 &辰 &巳 &午 &未 &申 &酉 &戌 &亥 &乾 &坤 &震 &巽 &坎 &离 &艮 &兑\\ \hline 子 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 丑 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 寅 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline 卯 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 辰 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 巳 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &1 &0 &1 &0 &0\\ \hline 午 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 未 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 申 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 酉 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline 戌 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 亥 &0 &0 &0 &0 &0 &1 &1 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 乾 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline 坤 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 震 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline 巽 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline 坎 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 离 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 艮 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 兑 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline \end{array} $$

第一步:生成自乘矩阵


系统的邻接矩阵的表示

$$B=\begin{vmatrix}1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1\\ 0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0\\ 0&0&0&1&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1\\ 0&0&0&0&0&1&0&0&1&0&0&0&0&0&0&1&0&1&0&0\\ 0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&1&0&0&1&0&0&0&0&0&0&0\\ 1&0&0&0&0&0&0&0&1&0&1&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&1&1&0&0&0&1&1&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&1&0&0\\ 1&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&1&1&0&0&0&0&0\\ 0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&1&1&0&0&0\\ 0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&1&0&0&0\\ 1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0\\ 0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&1\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1\\\end{vmatrix} $$

第二步:系统的区域划分,判断系统是否为一个系统,找出最大区域


系统为一个系统。矩阵运算显示是一个连通区域


第三步:系统的环路分析


分析的矩阵为:

$$A=\begin{array} {c|ccccccc}{M_{20 \times20}} &子 &丑 &寅 &卯 &辰 &巳 &午 &未 &申 &酉 &戌 &亥 &乾 &坤 &震 &巽 &坎 &离 &艮 &兑\\ \hline 子 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 丑 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 寅 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline 卯 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 辰 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 巳 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &1 &0 &1 &0 &0\\ \hline 午 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 未 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 申 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 酉 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline 戌 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 亥 &0 &0 &0 &0 &0 &1 &1 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 乾 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline 坤 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 震 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline 巽 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline 坎 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 离 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 艮 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 兑 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline \end{array} $$
兑、
坤、
巳、
兑、
申、巽、离、
辰、
乾、
子、申、
巳、午、戌、
离、
子、
坤、
丑、坎、
酉、
子、
寅、兑、

-----------------------------------------------------------------------------------

该矩阵中没有环路


对环路进行缩减,也就是进行缩点运算

$$DeduseMatrix=\begin{array} {c|c|c|c|c|c|c|c}{M_{20 \times20}} &子 &丑 &寅 &卯 &辰 &巳 &午 &未 &申 &酉 &戌 &亥 &乾 &坤 &震 &巽 &坎 &离 &艮 &兑\\ \hline 子 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 丑 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 寅 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline 卯 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 辰 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 巳 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &1 &0 &1 &0 &0\\ \hline 午 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 未 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 申 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 酉 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline 戌 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 亥 &0 &0 &0 &0 &0 &1 &1 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 乾 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline 坤 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 震 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline 巽 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline 坎 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 离 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 艮 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 兑 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline \end{array} $$

第四步:求解缩减系统的可达矩阵,同时求出骨架矩阵


可达矩阵:

$$可达矩阵R=\begin{array} {c|c|c|c|c|c|c|c}{M_{20 \times20}} &子 &丑 &寅 &卯 &辰 &巳 &午 &未 &申 &酉 &戌 &亥 &乾 &坤 &震 &巽 &坎 &离 &艮 &兑\\ \hline 子 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 丑 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 寅 &1 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline 卯 &1 &1 &0 &1 &0 &1 &0 &0 &1 &1 &0 &0 &1 &0 &0 &1 &1 &1 &0 &1\\ \hline 辰 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 巳 &1 &1 &0 &0 &0 &1 &0 &0 &1 &1 &0 &0 &1 &0 &0 &1 &1 &1 &0 &1\\ \hline 午 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 未 &0 &0 &0 &0 &1 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 申 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 酉 &1 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &1 &0 &0 &0 &0 &1 &0 &0\\ \hline 戌 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 亥 &1 &1 &0 &0 &0 &1 &1 &0 &1 &1 &1 &1 &1 &0 &0 &1 &1 &1 &0 &1\\ \hline 乾 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &1 &0 &0\\ \hline 坤 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline 震 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &1 &0 &0 &0 &0 &0\\ \hline 巽 &1 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &1 &0 &0 &1 &1 &1 &0 &1\\ \hline 坎 &1 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &1 &0 &0 &0 &1 &1 &0 &0\\ \hline 离 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline 艮 &1 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &1 &1\\ \hline 兑 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

骨架矩阵

$$缩减矩阵S=\begin{array} {c|ccccccc}{M_{20 \times20}} &子 &丑 &寅 &卯 &辰 &巳 &午 &未 &申 &酉 &戌 &亥 &乾 &坤 &震 &巽 &坎 &离 &艮 &兑\\ \hline 子 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 丑 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 寅 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline 卯 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 辰 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 巳 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline 午 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 未 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 申 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 酉 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline 戌 &1 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 亥 &0 &0 &0 &0 &0 &1 &1 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 乾 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline 坤 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 震 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline 巽 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline 坎 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 离 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline 艮 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline 兑 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline \end{array} $$

第五步:对骨架矩阵进行层级分解,可以是原因优先,可以是结果优先


原因优先层级划分最终图形

  
                                                           
1                                                         
   1                                                      
      1                                                   
                                                           
            1                                             
         1                                                
                                                           
1                                                         
               1 1                                       
                        1                                 
            1                                             
                     1    1                              
                                                           
1                   1                                    
                                    1                     
                                 1                        
                                    1 1 1               
                        1                                 
            1                1                           

结果优先层级划分最终图形

  
                                                           
                                                           
                                                           
                                                           
         1                                                
         1                                                
1    1                                                   
1                                                         
1                                                         
                     1                                    
               1                                          
                        1                                 
                     1                                    
                                 1                        
         1                1                              
                                       1                  
            1                               1            
      1                                        1         
                                                   1      
   1             1                               1      

弹性势能最大,两端发散的的层级结果

弹性势能最小,中间靠拢的结果


第六步:对骨架矩阵的中的活动要素进行分析


层级的序号 原因优先的方法-得到的各层级的要素 结果优先的方法-得到的各层级要素 共同有的要素 活动的要素
0 子,午,申,兑 午,申,兑
1 丑,辰,戌,坤,离 丑,辰,戌,坤
2 寅,未,乾,震 寅,未,震
3 酉,兑 酉,艮 兑,艮
4 丑,坎
5 申,坤,巽 申,坤
6 寅,辰,巳,午,戌 寅,辰,午,戌
7 卯,未,亥,震,艮 卯,亥 卯,亥 未,震,艮

由上表计算得出活动的要素以及它们活动的层级:

要素的序号 要素的名称 开始层级 终止层级
6 0 6
8 0 5
19 0 3
1 1 4
4 1 6
10 1 6
13 1 5
2 2 6
7 2 7
14 2 7
18 3 7

根据找到的活动要素,并在层级中移动这些活动要素找出最好的结果。活动的要素要注意本身有因果关系的

A、分层的结果一定要符合箭头一定向上

B、不能增加层级的数目

第0层
第1层
第2层
第3层
第4层
第5层
第6层
第7层

这个方法很土鳖的,赶紧输入原始矩阵,赶紧看,1分钟后跳转到更好的方法的页面!


化学加平台
解释结构模型
感谢化学加提供单独服务器服务器!请大家多支持化学加平台,可以多介绍人关注化学加!
对解释结构模型在线计算有什么意见与建议请发电子邮件到, hwstu #sohu.com 把#替换成 @