模糊可达矩阵求解步骤

Fuzzy Reachability Matrix

Fuzzy Operator Pair

需要帮助可发邮件到 hwstu # sohu.com 把 #替换成@,非免费。

模糊乘算子 模糊加算子


选择的模糊算子对如下


$$ \begin{array} {c|c}{OP} & 模糊乘 \odot & 模糊加 \oplus \\ \hline 名称 &\color{red}{取最小} &\color{blue}{取最大} \\ \hline 计算公式 &\color{red}{min(p,q)} &\color{blue}{max(p,q) } \\ \hline \end{array} $$


模糊相乘矩阵


$$\tilde B=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0.37 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0.32 &0 &0\\ \hline C &0.51 &0.82 &1 &0 &0 &0 &0 &0.16 &0 &0.06\\ \hline D &0 &0 &0 &1 &0 &0.45 &0.08 &0.54 &0 &0\\ \hline E &0 &0 &0.49 &0 &1 &0 &0 &0 &0 &0.17\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0.74 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0.08 &0 &0 &0 &0 &0.25 &1 &0\\ \hline J &0 &0 &0.91 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

求解过程


$$\tilde B_{1}=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0.37 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0.32 &0 &0\\ \hline C &0.51 &0.82 &1 &0 &0 &0 &0 &0.16 &0 &0.06\\ \hline D &0 &0 &0 &1 &0 &0.45 &0.08 &0.54 &0 &0\\ \hline E &0 &0 &0.49 &0 &1 &0 &0 &0 &0 &0.17\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0.74 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0.08 &0 &0 &0 &0 &0.25 &1 &0\\ \hline J &0 &0 &0.91 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$$$\tilde B_{2}=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0.37 &0.37 &0 &0 &0 &0 &0.16 &0 &0.06\\ \hline B &0 &1 &0 &0.32 &0 &0 &0 &0.32 &0 &0\\ \hline C &0.51 &0.82 &1 &0.16 &0 &0 &0 &0.32 &0 &0.06\\ \hline D &0 &0 &0 &1 &0 &0.45 &0.08 &0.54 &0 &0\\ \hline E &0.49 &0.49 &0.49 &0 &1 &0 &0 &0.16 &0 &0.17\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0.74 &0 &0.45 &0.08 &1 &0 &0\\ \hline I &0.08 &0.08 &0.08 &0.25 &0 &0 &0 &0.25 &1 &0.06\\ \hline J &0.51 &0.82 &0.91 &0 &0 &0 &0 &0.16 &0 &1\\ \hline \end{array} $$$$\tilde B_{3}=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0.37 &0.37 &0.16 &0 &0 &0 &0.32 &0 &0.06\\ \hline B &0 &1 &0 &0.32 &0 &0.32 &0.08 &0.32 &0 &0\\ \hline C &0.51 &0.82 &1 &0.32 &0 &0.16 &0.08 &0.32 &0 &0.06\\ \hline D &0 &0 &0 &1 &0 &0.45 &0.08 &0.54 &0 &0\\ \hline E &0.49 &0.49 &0.49 &0.16 &1 &0 &0 &0.32 &0 &0.17\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0.74 &0 &0.45 &0.08 &1 &0 &0\\ \hline I &0.08 &0.08 &0.08 &0.25 &0 &0.25 &0.08 &0.25 &1 &0.06\\ \hline J &0.51 &0.82 &0.91 &0.16 &0 &0 &0 &0.32 &0 &1\\ \hline \end{array} $$$$\tilde B_{4}=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0.37 &0.37 &0.32 &0 &0.16 &0.08 &0.32 &0 &0.06\\ \hline B &0 &1 &0 &0.32 &0 &0.32 &0.08 &0.32 &0 &0\\ \hline C &0.51 &0.82 &1 &0.32 &0 &0.32 &0.08 &0.32 &0 &0.06\\ \hline D &0 &0 &0 &1 &0 &0.45 &0.08 &0.54 &0 &0\\ \hline E &0.49 &0.49 &0.49 &0.32 &1 &0.16 &0.08 &0.32 &0 &0.17\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0.74 &0 &0.45 &0.08 &1 &0 &0\\ \hline I &0.08 &0.08 &0.08 &0.25 &0 &0.25 &0.08 &0.25 &1 &0.06\\ \hline J &0.51 &0.82 &0.91 &0.32 &0 &0.16 &0.08 &0.32 &0 &1\\ \hline \end{array} $$$$\tilde B_{5}=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0.37 &0.37 &0.32 &0 &0.32 &0.08 &0.32 &0 &0.06\\ \hline B &0 &1 &0 &0.32 &0 &0.32 &0.08 &0.32 &0 &0\\ \hline C &0.51 &0.82 &1 &0.32 &0 &0.32 &0.08 &0.32 &0 &0.06\\ \hline D &0 &0 &0 &1 &0 &0.45 &0.08 &0.54 &0 &0\\ \hline E &0.49 &0.49 &0.49 &0.32 &1 &0.32 &0.08 &0.32 &0 &0.17\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0.74 &0 &0.45 &0.08 &1 &0 &0\\ \hline I &0.08 &0.08 &0.08 &0.25 &0 &0.25 &0.08 &0.25 &1 &0.06\\ \hline J &0.51 &0.82 &0.91 &0.32 &0 &0.32 &0.08 &0.32 &0 &1\\ \hline \end{array} $$$$\tilde B_{6}=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0.37 &0.37 &0.32 &0 &0.32 &0.08 &0.32 &0 &0.06\\ \hline B &0 &1 &0 &0.32 &0 &0.32 &0.08 &0.32 &0 &0\\ \hline C &0.51 &0.82 &1 &0.32 &0 &0.32 &0.08 &0.32 &0 &0.06\\ \hline D &0 &0 &0 &1 &0 &0.45 &0.08 &0.54 &0 &0\\ \hline E &0.49 &0.49 &0.49 &0.32 &1 &0.32 &0.08 &0.32 &0 &0.17\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0.74 &0 &0.45 &0.08 &1 &0 &0\\ \hline I &0.08 &0.08 &0.08 &0.25 &0 &0.25 &0.08 &0.25 &1 &0.06\\ \hline J &0.51 &0.82 &0.91 &0.32 &0 &0.32 &0.08 &0.32 &0 &1\\ \hline \end{array} $$

模糊可达矩阵 $ \tilde R = \tilde B_{ 6}$



模糊可达矩阵


$$\tilde R=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0.37 &0.37 &0.32 &0 &0.32 &0.08 &0.32 &0 &0.06\\ \hline B &0 &1 &0 &0.32 &0 &0.32 &0.08 &0.32 &0 &0\\ \hline C &0.51 &0.82 &1 &0.32 &0 &0.32 &0.08 &0.32 &0 &0.06\\ \hline D &0 &0 &0 &1 &0 &0.45 &0.08 &0.54 &0 &0\\ \hline E &0.49 &0.49 &0.49 &0.32 &1 &0.32 &0.08 &0.32 &0 &0.17\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0.74 &0 &0.45 &0.08 &1 &0 &0\\ \hline I &0.08 &0.08 &0.08 &0.25 &0 &0.25 &0.08 &0.25 &1 &0.06\\ \hline J &0.51 &0.82 &0.91 &0.32 &0 &0.32 &0.08 &0.32 &0 &1\\ \hline \end{array} $$

模糊可达矩阵求解的关键内容

计算步骤

  设:$\tilde C = \tilde B \times \tilde B $

  $ \tilde C=\left[ c_{ij} \right]_{n \times n} \quad \tilde B=\left[ b_{ij} \right]_{n \times n}$

  $$ \begin{equation}\begin{split} c_{ij}&=\sum_{k=1}^n b_{ik}\odot b_{kj} \\ &=(b_{i1} \odot b_{1j}) \oplus (b_{i2} \odot b_{2j}) \oplus (b_{i3} \odot b_{3j}) \cdots \oplus \cdots(b_{in} \odot b_{nj})\\ \end{split}\end{equation} $$

  其中$ \odot 为模糊乘算子 $

  其中$ \oplus 为模糊加算子 $

  对于任意$c_{ij}$具有单调递增的特性,故模糊可达矩阵必定存在。且当模糊加算子取查德算子即取最大时,其收敛值可以不为1。

可达的步长

  当模糊算子对为概率算子、爱因斯坦算子时候,只能无限接近模糊可达矩阵,其步长为无限,一般取近似值,本处取的是0.99999999999999为 1