选择的模糊算子对如下
$$ \begin{array} {c|c}{OP} & 模糊乘 \odot & 模糊加 \oplus \\ \hline 名称 &\color{red}{取最小} &\color{blue}{取最大} \\ \hline 计算公式 &\color{red}{min(p,q)} &\color{blue}{max(p,q) } \\ \hline \end{array} $$
模糊相乘矩阵
$$\tilde B=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0.98 &0 &0.85 &0 &0 &0.27\\ \hline B &0 &1 &0.42 &0.76 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0.89 &0 &0 &0.73 &0 &0 &0.97\\ \hline D &0 &0 &0.01 &1 &0 &0.42 &0 &0 &0 &0\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0.48 &0 &0 &0.41 &0 &1 &0 &0.58 &0.67 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0.92\\ \hline H &0 &0 &0 &0 &0 &0 &0.38 &1 &0.53 &0\\ \hline I &0 &0 &0.04 &0 &0 &0 &0 &0 &1 &0.16\\ \hline J &0 &0 &0 &0 &0.45 &0 &0 &0 &0 &1\\ \hline \end{array} $$
求解过程
$$\tilde B_{1}=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0.98 &0 &0.85 &0 &0 &0.27\\ \hline B &0 &1 &0.42 &0.76 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0.89 &0 &0 &0.73 &0 &0 &0.97\\ \hline D &0 &0 &0.01 &1 &0 &0.42 &0 &0 &0 &0\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0.48 &0 &0 &0.41 &0 &1 &0 &0.58 &0.67 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0.92\\ \hline H &0 &0 &0 &0 &0 &0 &0.38 &1 &0.53 &0\\ \hline I &0 &0 &0.04 &0 &0 &0 &0 &0 &1 &0.16\\ \hline J &0 &0 &0 &0 &0.45 &0 &0 &0 &0 &1\\ \hline \end{array} $$$$\tilde B_{2}=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0.98 &0 &0.85 &0 &0 &0.85\\ \hline B &0 &1 &0.42 &0.76 &0 &0.42 &0.42 &0 &0 &0.42\\ \hline C &0 &0 &1 &0.89 &0.45 &0.42 &0.73 &0 &0 &0.97\\ \hline D &0.42 &0 &0.01 &1 &0 &0.42 &0.01 &0.42 &0.42 &0.01\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0.48 &0 &0.04 &0.41 &0.48 &1 &0.48 &0.58 &0.67 &0.27\\ \hline G &0 &0 &0 &0 &0.45 &0 &1 &0 &0 &0.92\\ \hline H &0 &0 &0.04 &0 &0 &0 &0.38 &1 &0.53 &0.38\\ \hline I &0 &0 &0.04 &0.04 &0.16 &0 &0.04 &0 &1 &0.16\\ \hline J &0 &0 &0 &0 &0.45 &0 &0 &0 &0 &1\\ \hline \end{array} $$$$\tilde B_{3}=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0.98 &0 &0.85 &0 &0 &0.85\\ \hline B &0.42 &1 &0.42 &0.76 &0.42 &0.42 &0.42 &0.42 &0.42 &0.42\\ \hline C &0.42 &0 &1 &0.89 &0.45 &0.42 &0.73 &0.42 &0.42 &0.97\\ \hline D &0.42 &0 &0.04 &1 &0.42 &0.42 &0.42 &0.42 &0.42 &0.27\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0.48 &0 &0.04 &0.41 &0.48 &1 &0.48 &0.58 &0.67 &0.48\\ \hline G &0 &0 &0 &0 &0.45 &0 &1 &0 &0 &0.92\\ \hline H &0 &0 &0.04 &0.04 &0.38 &0 &0.38 &1 &0.53 &0.38\\ \hline I &0 &0 &0.04 &0.04 &0.16 &0.04 &0.04 &0 &1 &0.16\\ \hline J &0 &0 &0 &0 &0.45 &0 &0 &0 &0 &1\\ \hline \end{array} $$$$\tilde B_{4}=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0.98 &0 &0.85 &0 &0 &0.85\\ \hline B &0.42 &1 &0.42 &0.76 &0.42 &0.42 &0.42 &0.42 &0.42 &0.42\\ \hline C &0.42 &0 &1 &0.89 &0.45 &0.42 &0.73 &0.42 &0.42 &0.97\\ \hline D &0.42 &0 &0.04 &1 &0.42 &0.42 &0.42 &0.42 &0.42 &0.42\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0.48 &0 &0.04 &0.41 &0.48 &1 &0.48 &0.58 &0.67 &0.48\\ \hline G &0 &0 &0 &0 &0.45 &0 &1 &0 &0 &0.92\\ \hline H &0 &0 &0.04 &0.04 &0.38 &0.04 &0.38 &1 &0.53 &0.38\\ \hline I &0.04 &0 &0.04 &0.04 &0.16 &0.04 &0.04 &0.04 &1 &0.16\\ \hline J &0 &0 &0 &0 &0.45 &0 &0 &0 &0 &1\\ \hline \end{array} $$$$\tilde B_{5}=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0.98 &0 &0.85 &0 &0 &0.85\\ \hline B &0.42 &1 &0.42 &0.76 &0.42 &0.42 &0.42 &0.42 &0.42 &0.42\\ \hline C &0.42 &0 &1 &0.89 &0.45 &0.42 &0.73 &0.42 &0.42 &0.97\\ \hline D &0.42 &0 &0.04 &1 &0.42 &0.42 &0.42 &0.42 &0.42 &0.42\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0.48 &0 &0.04 &0.41 &0.48 &1 &0.48 &0.58 &0.67 &0.48\\ \hline G &0 &0 &0 &0 &0.45 &0 &1 &0 &0 &0.92\\ \hline H &0.04 &0 &0.04 &0.04 &0.38 &0.04 &0.38 &1 &0.53 &0.38\\ \hline I &0.04 &0 &0.04 &0.04 &0.16 &0.04 &0.04 &0.04 &1 &0.16\\ \hline J &0 &0 &0 &0 &0.45 &0 &0 &0 &0 &1\\ \hline \end{array} $$$$\tilde B_{6}=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0.98 &0 &0.85 &0 &0 &0.85\\ \hline B &0.42 &1 &0.42 &0.76 &0.42 &0.42 &0.42 &0.42 &0.42 &0.42\\ \hline C &0.42 &0 &1 &0.89 &0.45 &0.42 &0.73 &0.42 &0.42 &0.97\\ \hline D &0.42 &0 &0.04 &1 &0.42 &0.42 &0.42 &0.42 &0.42 &0.42\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0.48 &0 &0.04 &0.41 &0.48 &1 &0.48 &0.58 &0.67 &0.48\\ \hline G &0 &0 &0 &0 &0.45 &0 &1 &0 &0 &0.92\\ \hline H &0.04 &0 &0.04 &0.04 &0.38 &0.04 &0.38 &1 &0.53 &0.38\\ \hline I &0.04 &0 &0.04 &0.04 &0.16 &0.04 &0.04 &0.04 &1 &0.16\\ \hline J &0 &0 &0 &0 &0.45 &0 &0 &0 &0 &1\\ \hline \end{array} $$
模糊可达矩阵 $ \tilde R = \tilde B_{ 6}$
模糊可达矩阵
$$\tilde R=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0.98 &0 &0.85 &0 &0 &0.85\\ \hline B &0.42 &1 &0.42 &0.76 &0.42 &0.42 &0.42 &0.42 &0.42 &0.42\\ \hline C &0.42 &0 &1 &0.89 &0.45 &0.42 &0.73 &0.42 &0.42 &0.97\\ \hline D &0.42 &0 &0.04 &1 &0.42 &0.42 &0.42 &0.42 &0.42 &0.42\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0.48 &0 &0.04 &0.41 &0.48 &1 &0.48 &0.58 &0.67 &0.48\\ \hline G &0 &0 &0 &0 &0.45 &0 &1 &0 &0 &0.92\\ \hline H &0.04 &0 &0.04 &0.04 &0.38 &0.04 &0.38 &1 &0.53 &0.38\\ \hline I &0.04 &0 &0.04 &0.04 &0.16 &0.04 &0.04 &0.04 &1 &0.16\\ \hline J &0 &0 &0 &0 &0.45 &0 &0 &0 &0 &1\\ \hline \end{array} $$