模糊解释结构模型截距求解

intecept FISM

需要帮助可发邮件到 hwstu # sohu.com 把 #替换成@,非免费。

模糊乘算子 模糊加算子


选择的模糊算子对如下


$$ \begin{array} {c|c}{OP} & 模糊乘 \odot & 模糊加 \oplus \\ \hline 名称 &\color{red}{取最小} &\color{blue}{取最大} \\ \hline 计算公式 &\color{red}{min(p,q)} &\color{blue}{max(p,q) } \\ \hline \end{array} $$


模糊相乘矩阵


$$\tilde B=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0.06 &0.69 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0.03 &0.5\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0.28 &0\\ \hline D &0.16 &0.08 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0.53 &0.79 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0.71 &0 &0.93 &0 &0 &0 &1 &0 &0 &0.63\\ \hline H &0 &0 &0.85 &0 &0 &0 &0 &1 &0 &0.64\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0.65\\ \hline J &0 &0 &0 &0 &0.27 &0 &0 &0 &0.49 &1\\ \hline \end{array} $$

模糊可达矩阵


$$\tilde R=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0.53 &0.69 &0.06 &0.69 &0 &0 &0 &0.49 &0.5\\ \hline B &0 &1 &0.27 &0 &0.27 &0 &0 &0 &0.49 &0.5\\ \hline C &0 &0.27 &1 &0 &0.27 &0 &0 &0 &0.28 &0.28\\ \hline D &0.16 &0.16 &0.16 &1 &0.16 &0 &0 &0 &0.16 &0.16\\ \hline E &0 &0.53 &0.79 &0 &1 &0 &0 &0 &0.49 &0.5\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0.71 &0.53 &0.93 &0.06 &0.69 &0 &1 &0 &0.49 &0.63\\ \hline H &0 &0.27 &0.85 &0 &0.27 &0 &0 &1 &0.49 &0.64\\ \hline I &0 &0.27 &0.27 &0 &0.27 &0 &0 &0 &1 &0.65\\ \hline J &0 &0.27 &0.27 &0 &0.27 &0 &0 &0 &0.49 &1\\ \hline \end{array} $$

$$ 阈值集合\ddot \Delta = (0.06, 0.16, 0.27, 0.28, 0.49, 0.5, 0.53, 0.63, 0.64, 0.65, 0.69, 0.71, 0.79, 0.85, 0.93, 1) $$



求解出所有的对应的截矩阵



取截距的定义$$ r _{ij}= \left\{ \begin{array}{ll}1 & \textrm{当:$ \tilde r_{ij} ≥\lambda $}\\ 0 & \textrm{当:$ \tilde r_{ij} < \lambda $ } \end{array} \right.$$



当前的截距 $\lambda$ = 0.06
$$R_{0.06} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &1 &1 &1 &1 &0 &0 &0 &1 &1\\ \hline B &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline C &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline D &1 &1 &1 &1 &1 &0 &0 &0 &1 &1\\ \hline E &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &1 &1 &1 &1 &1 &0 &1 &0 &1 &1\\ \hline H &0 &1 &1 &0 &1 &0 &0 &1 &1 &1\\ \hline I &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline J &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 0.16
$$R_{0.16} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline B &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline C &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline D &1 &1 &1 &1 &1 &0 &0 &0 &1 &1\\ \hline E &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &1 &1 &1 &0 &1 &0 &1 &0 &1 &1\\ \hline H &0 &1 &1 &0 &1 &0 &0 &1 &1 &1\\ \hline I &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline J &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 0.27
$$R_{0.27} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline B &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline C &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &1 &1 &1 &0 &1 &0 &1 &0 &1 &1\\ \hline H &0 &1 &1 &0 &1 &0 &0 &1 &1 &1\\ \hline I &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline J &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 0.28
$$R_{0.28} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &1 &1\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &1 &1 &1 &0 &1 &0 &1 &0 &1 &1\\ \hline H &0 &0 &1 &0 &0 &0 &0 &1 &1 &1\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 0.49
$$R_{0.49} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &1 &1 &0 &1 &0 &0 &0 &1 &1\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &1 &1 &1 &0 &1 &0 &1 &0 &1 &1\\ \hline H &0 &0 &1 &0 &0 &0 &0 &1 &1 &1\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 0.5
$$R_{0.5} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &1 &1 &0 &1 &0 &0 &0 &0 &1\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &1 &1 &0 &1 &0 &0 &0 &0 &1\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &1 &1 &1 &0 &1 &0 &1 &0 &0 &1\\ \hline H &0 &0 &1 &0 &0 &0 &0 &1 &0 &1\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 0.53
$$R_{0.53} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &1 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &1 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &1 &1 &1 &0 &1 &0 &1 &0 &0 &1\\ \hline H &0 &0 &1 &0 &0 &0 &0 &1 &0 &1\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 0.63
$$R_{0.63} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &1 &0 &1 &0 &1 &0 &1 &0 &0 &1\\ \hline H &0 &0 &1 &0 &0 &0 &0 &1 &0 &1\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 0.64
$$R_{0.64} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &1 &0 &1 &0 &1 &0 &1 &0 &0 &0\\ \hline H &0 &0 &1 &0 &0 &0 &0 &1 &0 &1\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 0.65
$$R_{0.65} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &1 &0 &1 &0 &1 &0 &1 &0 &0 &0\\ \hline H &0 &0 &1 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 0.69
$$R_{0.69} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &1 &0 &1 &0 &1 &0 &1 &0 &0 &0\\ \hline H &0 &0 &1 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 0.71
$$R_{0.71} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &1 &0 &1 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &1 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 0.79
$$R_{0.79} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &1 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &1 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &1 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 0.85
$$R_{0.85} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &1 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &1 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 0.93
$$R_{0.93} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &1 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

当前的截距 $\lambda$ = 1
$$R_{1} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

截距方式的模糊解释结构模型求解论文写作技巧

$ \require{cancel} \require{AMScd} \begin{CD} \tilde R=\left[ \tilde r_{ij} \right]_{n \times n}@>由阈值集合得截距阵>> \left\{ \begin{array}{} \\ \textrm{截距= $\lambda1$} & R_{\lambda1} @> ISM四大运算 >> 对应的层级拓扑图 \\ \\ \textrm{截距= $\lambda2$} & R_{\lambda2} @> ISM四大运算 >> 对应的层级拓扑图 \\ \\ \vdots & \vdots \\ \\ \textrm{截距= $\lambda n$} & R_{\lambda n} @> ISM四大运算 >> 对应的层级拓扑图 \\ \end{array} \right. \end{CD} $

  阈值集合里的数目是关键,显然阈值集合的数目越大对应的情况越多

  对于大论文如博士论文,硕士论文除了灌水外,还可以把如下矩阵丢到附件:

  • 每个截距阵,截距阵对应的可达矩阵,截距阵对应的一般性骨架矩阵,都可以丢到附件中。
  • 每个结果的拓扑层级图,最好放到正文。

  特性的选择描述

  对于小论文,把所有的截距阵的解都丢进去显然不现实。这样版面费都交不起,因此布尔矩阵方面可以不给出

  • 1、选择图中刚好有回路变成非回路的相邻两个图
  • 2、选择图中连通区域发生变化的两个图,如,某个图只有一个连通域,突然变成了多个连通域了。
  • 3、选择图中层级总数发生了变化的进行讨论。