选择的模糊算子对如下
$$ \begin{array} {c|c}{OP} & 模糊乘 \odot & 模糊加 \oplus \\ \hline 名称 &\color{red}{取最小} &\color{blue}{取最大} \\ \hline 计算公式 &\color{red}{min(p,q)} &\color{blue}{max(p,q) } \\ \hline \end{array} $$
模糊相乘矩阵
$$\tilde B=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0.82 &0 &0\\ \hline C &0.53 &0.42 &1 &0 &0 &0 &0.49 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0.65 &0.59 &0\\ \hline E &0.39 &0 &0 &0 &1 &0 &0.57 &0 &0 &0\\ \hline F &0.9 &0.8 &0 &0 &0 &1 &0.26 &0 &0.39 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0.24\\ \hline H &0 &0.17 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0.57 &0 &0 &0 &0 &0 &0 &0.68 &1\\ \hline \end{array} $$
模糊可达矩阵
$$\tilde R=\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0.82 &0 &0\\ \hline C &0.53 &0.42 &1 &0 &0 &0 &0.49 &0.42 &0.24 &0.24\\ \hline D &0 &0.17 &0 &1 &0 &0 &0 &0.65 &0.59 &0\\ \hline E &0.39 &0.24 &0 &0 &1 &0 &0.57 &0.24 &0.24 &0.24\\ \hline F &0.9 &0.8 &0 &0 &0 &1 &0.26 &0.8 &0.39 &0.24\\ \hline G &0 &0.24 &0 &0 &0 &0 &1 &0.24 &0.24 &0.24\\ \hline H &0 &0.17 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0.57 &0 &0 &0 &0 &0 &0.57 &0.68 &1\\ \hline \end{array} $$
$$ 阈值集合\ddot \Delta = (0.17, 0.24, 0.26, 0.39, 0.42, 0.49, 0.53, 0.57, 0.59, 0.65, 0.68, 0.8, 0.82, 0.9, 1) $$
求解出所有的对应的截矩阵
取截距的定义$$ r _{ij}= \left\{ \begin{array}{ll}1 & \textrm{当:$ \tilde r_{ij} ≥\lambda $}\\ 0 & \textrm{当:$ \tilde r_{ij} < \lambda $ } \end{array} \right.$$
当前的截距 $\lambda$ = 0.17
$$R_{0.17} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline C &1 &1 &1 &0 &0 &0 &1 &1 &1 &1\\ \hline D &0 &1 &0 &1 &0 &0 &0 &1 &1 &0\\ \hline E &1 &1 &0 &0 &1 &0 &1 &1 &1 &1\\ \hline F &1 &1 &0 &0 &0 &1 &1 &1 &1 &1\\ \hline G &0 &1 &0 &0 &0 &0 &1 &1 &1 &1\\ \hline H &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &1 &0 &0 &0 &0 &0 &1 &1 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.24
$$R_{0.24} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline C &1 &1 &1 &0 &0 &0 &1 &1 &1 &1\\ \hline D &0 &0 &0 &1 &0 &0 &0 &1 &1 &0\\ \hline E &1 &1 &0 &0 &1 &0 &1 &1 &1 &1\\ \hline F &1 &1 &0 &0 &0 &1 &1 &1 &1 &1\\ \hline G &0 &1 &0 &0 &0 &0 &1 &1 &1 &1\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &1 &0 &0 &0 &0 &0 &1 &1 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.26
$$R_{0.26} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline C &1 &1 &1 &0 &0 &0 &1 &1 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &1 &1 &0\\ \hline E &1 &0 &0 &0 &1 &0 &1 &0 &0 &0\\ \hline F &1 &1 &0 &0 &0 &1 &1 &1 &1 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &1 &0 &0 &0 &0 &0 &1 &1 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.39
$$R_{0.39} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline C &1 &1 &1 &0 &0 &0 &1 &1 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &1 &1 &0\\ \hline E &1 &0 &0 &0 &1 &0 &1 &0 &0 &0\\ \hline F &1 &1 &0 &0 &0 &1 &0 &1 &1 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &1 &0 &0 &0 &0 &0 &1 &1 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.42
$$R_{0.42} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline C &1 &1 &1 &0 &0 &0 &1 &1 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &1 &1 &0\\ \hline E &0 &0 &0 &0 &1 &0 &1 &0 &0 &0\\ \hline F &1 &1 &0 &0 &0 &1 &0 &1 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &1 &0 &0 &0 &0 &0 &1 &1 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.49
$$R_{0.49} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline C &1 &0 &1 &0 &0 &0 &1 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &1 &1 &0\\ \hline E &0 &0 &0 &0 &1 &0 &1 &0 &0 &0\\ \hline F &1 &1 &0 &0 &0 &1 &0 &1 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &1 &0 &0 &0 &0 &0 &1 &1 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.53
$$R_{0.53} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline C &1 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &1 &1 &0\\ \hline E &0 &0 &0 &0 &1 &0 &1 &0 &0 &0\\ \hline F &1 &1 &0 &0 &0 &1 &0 &1 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &1 &0 &0 &0 &0 &0 &1 &1 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.57
$$R_{0.57} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &1 &1 &0\\ \hline E &0 &0 &0 &0 &1 &0 &1 &0 &0 &0\\ \hline F &1 &1 &0 &0 &0 &1 &0 &1 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &1 &0 &0 &0 &0 &0 &1 &1 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.59
$$R_{0.59} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &1 &1 &0\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &1 &1 &0 &0 &0 &1 &0 &1 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.65
$$R_{0.65} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &1 &0 &0\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &1 &1 &0 &0 &0 &1 &0 &1 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.68
$$R_{0.68} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &1 &1 &0 &0 &0 &1 &0 &1 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.8
$$R_{0.8} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &1 &1 &0 &0 &0 &1 &0 &1 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.82
$$R_{0.82} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &1 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 0.9
$$R_{0.9} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &1 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$
当前的截距 $\lambda$ = 1
$$R_{1} =\begin{array} {c|c|c}{M_{10 \times10}} &A &B &C &D &E &F &G &H &I &J\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline B &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline E &0 &0 &0 &0 &1 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0 &0\\ \hline G &0 &0 &0 &0 &0 &0 &1 &0 &0 &0\\ \hline H &0 &0 &0 &0 &0 &0 &0 &1 &0 &0\\ \hline I &0 &0 &0 &0 &0 &0 &0 &0 &1 &0\\ \hline J &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$